Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ

Декан факультета

Факультет авиационных и морских

технологий

Красильникова О.А.

«45» об /2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Теория механизмов и машин»

Направление подготовки	23.03.03 Эксплуатация транспортнотехнологических машин и комплексов
Направленность (профиль) образовательной программы	Автомобили: устройство, сервис и техническая эксплуатация
Квалификация выпускника	Бакалавр
Год начала подготовки (по учебному плану)	2021
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
2	4	3

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачёт	Кафедра «Машиностроение»

Разработчик рабочей программы:

Доцент, Доцент, Кандидат технических наук

Саблин П.А.

СОГЛАСОВАНО:

Заведующий кафедрой Кафедра «Машиностроение»

Заведующий выпускающей кафедры Кафедра «Тепловые энергетические установки» Сарилов М.Ю.

Смирнов А.В.

Оглавление

1	Введение	4
2	Перечень планируемых результатов обучения по дисциплине (модулю),	
	соотнесенных с индикаторами достижения компетенций	.5
3	Место дисциплины (модуля) в структуре образовательной программы	
	Объем дисциплины (модуля) в зачетных единицах с указанием количества	
	академических часов, выделенных на контактную работу обучающихся с	
	преподавателем (по видам учебных занятий) и на самостоятельную работу	
	обучающихся	.5
5	Содержание дисциплины (модуля), структурированное по темам (разделам) с указание	M
	отведенного на них количества академических часов и видов учебной работы	
6	Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)1	
7	Оценочные средства для проведения текущего контроля и промежуточной аттестации	
	обучающихся по дисциплине (модулю)	4
8	Учебно-методическое и информационное обеспечение дисциплины (модуля)1	
	8.1 Основная литература	
	8.2 Дополнительная литература	
	8.3 Методические указания для студентов по освоению дисциплины	
	8.4 Современные профессиональные базы данных и информационные справочные	
	системы, используемые при осуществлении образовательного процесса по	
	дисциплине	5
	8.5 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»,	
	необходимых для освоения дисциплины (модуля)	5
	8.6 Лицензионное и свободно распространяемое программное обеспечение,	
	используемое при осуществлении образовательного процесса по дисциплине1	6
9	Организационно-педагогические условия	
	9.1 Образовательные технологии	
	9.2 Занятия лекционного типа	
	9.3 Занятия семинарского типа	7
	9.4 Самостоятельная работа обучающихся по дисциплине (модулю)1	
	9.5 Методические указания для обучающихся по освоению дисциплины	
1(Описание материально-технического обеспечения, необходимого для	
	осуществления образовательного процесса по дисциплине (модулю)1	8
	10.1 Учебно-лабораторное оборудование	8
	10.2 Технические и электронные средства обучения	9
11	Иные сведения1	9
Π	риложение 12	21
	1 Перечень планируемых результатов обучения по дисциплине (модулю),	
	соотнесенных с индикаторами достижения компетенций	22
	2 Методические материалы, определяющие процедуры оценивания знаний, умений,	
	навыков и (или) опыта деятельности, характеризующие процесс формирования	
	компетенций2	22
	3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний,	
	умений, навыков и (или) опыта деятельности, характеризующие процесс	
	формирования компетенций в ходе освоения образовательной программы2	24

1 Введение

Рабочая программа и фонд оценочных средств дисциплины «Теория механизмов и машин» составлены в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Минобрнауки Российской Федерации № 916 от 07.08.2020 г., и основной профессиональной образовательной программы подготовки «Автомобили: устройство, сервис и техническая эксплуатация» по направлению подготовки «23.03.03 Эксплуатация транспортно-технологических машин и комплексов».

Задачи дисципонимать: плины - общие принципы реализации движения с помощью механизмов, взаимодействие механизмов в машине, обеспечивающее их кинематические и динамические свойства; знать: - общие методы анализа и синтеза механизмов машин и приборов; - системный подход к проектированию машин и механизмов, нахождению оптимальных параметров механизмов по заданным условиям работы; - основные методы расчета рациональных параметров механизмов по критериям оценки их работоспособности привить: - инженерное мышление; научиться ставить и решать практические задачи, доводя решение до числового результата, анализировать полученное решение; - навыки экспериментального исследования механизмов и пользования измерительной техникой для определения кинематических и динамических параметров машин и механизмов. Основные Раздел 1 Введение. Структурный синтез и анализ механизмов: раз-Структура механизмов, Классификация механизмов по Ассурулелы темы Артоболевскому, Структурный синтез и анализ плоских рычажных медисциплины ханизмов, Классификация кинематических пар, Схемы механизмов и принцип их образования. Раздел 2 Кинематический анализ механизмов: Кинематический анализ рычажных механизмов, Кинематический анализ планетарных механизмов, Построение планов скоростей и ускорений, Определение передаточных отношений зубчатых механизмов, Кинематический анализ кулачковых механизмов. Раздел 3 Общие методы динамического анализа механизмов: Общие методы динамического анализа механизмов, Кинетостатический расчет рычажных механизмов, Определение приведенного момента

инерции рычажного механизма экспериментальным методом, Уравновешивание вращающихся звеньев, Уравновешивание механизмов. Раздел 4 Общие методы синтеза механизмов: Общие методы синтеза механизмов, Синтез плоских механизмов с низшими кинематическими парами, Профилирование эвольвентных зубчатых колес методом обка-

та, Синтез кулачковых механизмов.

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Теория механизмов и машин» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и планируемые результаты обучения по практике

Код и наименование	Планируемые результаты обучения по практике			
компетенции	Перечень знаний	Перечень умений	Перечень навыков	
	Професси	иональные		
ОПК-1. Способен применять есте- ственнонаучные и общеинженерные знания, методы ма- тематического ана- лиза и моделирова- ния в профессио- нальной деятельно- сти	Знает теоретические основы естественнонаучных и общеинженерных дисциплин	Умеет применять методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	Владеет навыками теоретического и экспериментального исследования	

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Теория механизмов и машин» изучается на 2 курсе, 4 семестре. Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к базо-

вой части. Знания, умения и навыки, сформированные при изучении дисциплины «Теория механизмов и машин», будут востребованы при изучении последующих дисциплин: «Детали машин и основы конструирования», «Производственная практика (практика по получе-

нию профессиональных умений и опыта профессиональной деятельности)».

Дисциплина «Теория механизмов и машин» в рамках воспитательной работы направлена на формирование у обучающихся чувства ответственности или умения аргументировать, самостоятельного мышления, развития творчества, профессиональных умений или творчески развитой личности, системы осознанных знаний, ответственности за выполнение учебно-производственных заданий и т.д.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 3 з.е., 108 акад. час.

Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

Объем дисциплины	Всего акаде- мических ча- сов
Общая трудоемкость дисциплины	108
Контактная аудиторная работа обучающихся с преподавателем (по видам учебных занятий), всего	64
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками)	16
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия)	48
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консультации); взаимодействие в электронной информационно-образовательной среде вуза	44
Промежуточная аттестация обучающихся – Зачёт	0

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

	_	бной работы, вкл бучающихся и т		-
Наименование разделов, тем	Контак	,		
и содержание материала	Лекции	Семинарские (практические занятия)	Лабораторные занятия	CPC
Kyne		,		
Раздел 1 Введение. Структур			ХАНИЗМОВ	
Структура механизмов	4		Aumswob	
Основные понятия и определения теории механизмов и машин (ТММ). Основные виды механизмов. Классификация машин и механизмов. Кинематические пары. Пассивные связи в технике. Группы Ассура. Структурный синтез и анализ механизмов.	7			
Классификация механизмов		8		
по Ассуру-Артоболевскому Решение задач по анализу существующих механизмов, определению класса и составлению новых схем механизмов. Определение степени подвижности механизмов. Замена высших пар низшими. Выявление пассивных связей. Определение класса механизма. Формула строения механизма. Структурный синтез и анализ плоских рычажных механизмов Определение количества звеньев и кинематических пар механизма. Определение степени подвижности механизмов. Разбитие механизма на структурные Группы Ассура. Определение класса механизма. Построе-		8	4	
ние формулы строения механизма.				
Самостоятельное изучение теоретиче- ского материала Изучение теоретического материала, не рассмотренного на лекции				2
Подготовка к практическим занятиям Изучение необходимого теоретического материала для решения практических задач по разделу дисциплины.				1
Подготовка к лабораторным работам				4

Изучить методические указания, подго-				
товиться к выполнению лабораторной				
работы в лаборатории университета,				
подготовить отчет по выполненной ра-				
боте, подготовиться к защите.				
Расчетно-графическая работа				6
Задача 1. Структурный анализ ры-				
чажного механизма (выполняется в				
пояснительной записке).				
1. Вычертить схему механизма (без				
масштаба); пронумеровать звенья;				
буквами обозначить кинематические				
пары. Указать названия всех звеньев.				
Произвести анализ кинематических				
пар (указать количество кинемати-				
ческих пар и их класс).				
2. Определить степень подвижности				
механизма по формуле Чебышева.				
3. Если в механизме присутствуют из-				
быточные (пассивные) связи (или лиш-				
ние степени свободы), необходимо из-				
бавиться от них и повторить расчет.				
4. При наличии в механизме высших ки-				
нематических пар четвёртого класса				
произвести их замену на низшие ки-				
нематические пары пятого класса.				
5. Определить степень подвижности				
вновь образованного механизма по				
формуле Чебышева.				
6. Разбить механизм на группы Ассура,				
определить класс каждой группы и				
класс всего механизма.				
7. Записать формулу строения механизма.				
1 1 7 7 1				
Раздел 2 Кинематиче	ский ана.	лиз механизмо	В	
Кинематический анализ механизмов	2			
Задачи кинематического анализа. Кине-				
матический анализ рычажных, зубча-				
тых и кулачковых механизмов. Графи-				
ческие и аналитические методы кине-				
матического анализа. Построение пла-				
нов скоростей и планов ускорений.				
Кинематический анализ планетарных	2			
механизмов	<i>_</i>			
Общие сведения о планетарных меха-				
низмах. Определение линейных и угловых				
скоростей аналитическим и графиче-				
скоростей иналитическим и графиче-				
точных отношений графическим и ана- литическим методами.				
Определение передаточных отноше-			2	

ний зубчатых механизмов Получить из заданной схемы механизма рядовой зубчатый, планетарный и дифференциальный механизм. Определить аналитическим и графическим методами передаточное отношение планетарного механизма.				
Кинематический анализ кулачковых механизмов Определение закона движения толкателя по форме профиля кулачка. Построение кинематических диаграмм.			2	
Построение планов положений, скоростей и ускорений точек и звеньев механизмов. Решение задач по составлению уравнений кинематики и нахождению перемещений, скоростей и ускорений точек и звеньев механизма методом планов.		8		
Самостоятельное изучение теоретиче- ского материала Изучение теоретического материала, не рассмотренного на лекции				1
Подготовка к лабораторным работам Изучить методические указания, подготовиться к выполнению лабораторной работы в лаборатории университета, подготовить отчет по выполненной работе, подготовиться к защите.				2
Подготовка к практическим занятиям Изучение необходимого теоретического материала для решения практических задач по разделу дисциплины.				2
Расчетно-графическая работа Задача 2. Кинематический анализ рычажного механизма (выполняется на листе формата А3, расчеты — в пояснительной записке) 1. Выбрать масштаб и в масштабе построить схему рычажного механизма по заданным длинам звеньев. 2. Построить план скоростей и определить угловые скорости всех звеньев. 3. Построить план ускорений и определить угловые ускорения всех звеньев.				8
Раздел 3 Общие методы дин	амическо	ого анализа мех	анизмов	
Общие методы динамического анали- за механизмов	2			

Цели и задачи динамического анализа. Силы, действующие на звенья механизмов. Определение сил инерции подвижных звеньев механизма. Приведение сил и масс звеньев к точке или к звену приведения. Динамическая модель механизма. Уравнение движения механизма.				
Кинетостатический расчет рычажных механизмов	2			
Силы, действующих на звенья механизма. Определения реакций в кинематических парах применительно к группам Ассура графоаналитическим методом. Определение уравновешивающей силы (момента), подбор двигателя.				
Определение приведенного момента инерции рычажного механизма экс-			2	
периментальным методом Использования явления резонанса для определения приведенного момента инерции механизма.				
Уравновешивание вращающихся зве- ньев Статическое и динамическое урав-			2	
новешивание сил инерции вращающихся звеньев.				
Силовой анализ рычажных механизмов Решение задач по определению сил, действующих на звенья механизма. Составление уравнений равновесия. Определение реакций в кинематических парах. Выбор двигателя по уравновешивающей силе (моменту).		8		
Самостоятельное изучение теоретиче- ского материала Статическое и моментное уравновеши- вание механизмов.				4
Подготовка к лабораторным работам Изучить методические указания, подготовиться к выполнению лабораторной работы в лаборатории университета, подготовить отчет по выполненной работе, подготовиться к защите.				2
Подготовка к практическим занятиям Изучение необходимого теоретического материала для решения практических задач по разделу дисциплины.				2
Раздел 4 Общие мет		еза механизмон		
Общие методы синтеза механизмов	2			

Основные задачи синтеза механизмов.				
Целевые функции и ограничения. Синтез				
рычажных механизмов по положениям.				
Синтез зубчатых зацеплений. Синтез				
планетарных зубчатых механизмов.				
Синтез кулачковых механизмов.				
Синтез плоских механизмов с низши-	2			
ми кинематическими парами				
Проектирование механизмов по задан-				
ным положениям звеньев. Синтез схемы				
механизма шарнирного чытырёхзвенни-				
ка по заданному коэффициенту измене-				
ния средней скорости выходного звена.				
Профилирование эвольвентных зуб-			2	
чатых колес методом обката				
Расчет эвольвентной зубчатой передачи				
внешнего зацепления без подреза и заост-				
рения зубьев. Изготовление зубчатых ко-				
лес на бумажных дисках и построение				
зубчатого зацепления с указанием основ-				
ных геометрических параметров (диа-				
метров зубчатых колес, активной и тео-				
ретической линий зацепления, углов за-				
цепления, межосевого расстояния).				
Синтез кулачковых механизмов			2	
Нахождение сложного профиля кулачка			_	
по заданному закону движения толкате-				
ля и изготовление на бумажном диске				
Проектирование рычажных, зубча-		8		
тых и кулачковых механизмов		Ü		
Решение задач по нахождению основ-				
ных параметров четырехзвенных ры-				
чажных механизмов, зубчатых колес и				
зацеплений. Метод буквенных сомно-				
жителей при подборе чисел зубьев пла-				
нетарных механизмов. Метод обраще-				
ния движения при определении профиля				
кулачка по заданному закону движения				
толкателя.				
Самостоятельное изучение теоретиче-				2
ского материала				
Изучение теоретического материала,				
не рассмотренного на лекции				
Подготовка к лабораторным работам				2
Изучить методические указания, подго-				_
товиться к выполнению лабораторной				
работы в лаборатории университета,				
подготовить отчет по выполненной ра-				
боте, подготовиться к защите.				
Подготовка к практическим занятиям				2
практическим занятим				

Изучение необходимого теоретического материала для решения практических задач по разделу дисциплины.				
ИТОГО в 4 семестре	4	4		56
Раздел 4 Общие мет	оды синт	еза механизмо	В	
Расчетно-графическая работа				8
Задача 3. Кинематический анализ зуб-				
чатого механизма (выполняется на ли-				
сте формата А3, расчеты – в поясни-				
тельной записке):				
1. Определить степень подвижности				
зубчатого механизма по формуле Че-				
бышева.				
2. Разбить механизм на планетарную и				
простую ступени (в скобках указать				
номера звеньев, входящих в ступени).				
3. Используя условие соосности для пла-				
нетарного механизма, определить не-				
заданные числа зубьев зубчатых колёс.				
4. Составить формулу для определения				
передаточного отношения механизма				
и вычислить передаточное отноше-				
ние механизма по известным числам				
зубьев колес, модулю зацепления т и				
частоте вращения ведущего звена.				
5. Определить частоты вращения всех				
звеньев механизма аналитически.				
6. Подсчитать диаметры зубчатых ко-				
лес; вычертить в масштабе схему				
зубчатого механизма.				
7. Построить план линейных скоро-				
стей. На плане скоростей указать,				
каким звеньям принадлежит данный				
закон распределения скоростей.				
8. Построить план угловых скоростей.				
Вычислить частоты вращения всех звеньев механизма графически. Срав-				
нить с результатами, полученными				
аналитическим методом.				
				0
Итоговая аттестация п			1.0	
ИТОГО по дисциплине	16	32	16	44

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы Количество часов		
Rowin include the factor of th	Компоненты самостоятельной работы	Количество часов

Изучение теоретических разделов дисциплины	9
Выполнение отчета и подготовка к защите РГР	20
Выполнение отчета и подготовка к защите лаб.раб.	5
Подготовка к семинару	10
Итоговая аттестация по дисциплине – зачет	0

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации представлен в Приложении 1.

Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю), практике хранится на кафедре-разработчике в бумажном и электронном виде.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1 Теория механизмов и механика машин: учебник для втузов / К. В. Фролов, С. А. Попов, А. К. Мусатов [и др.]; Под ред. К.В. Фролова. 4-е изд., испр. и доп. М.: Высшая школа, 2003; 2001; 1998. 496с.
- 2 Артоболевский, И. И. Теория механизмов и машин: учебник для втузов / И. И. Артоболевский. М. : Наука, 1988.-639 с.
- 3 Артоболевский, И. И. Сборник задач по теории механизмов и машин : учебное пособие / И. И. Артоболевский, Б. В. Эдельштейн. М. : Наука, 1973. 256 с.
- 4 Попов, С. А. Курсовое проектирование по теории механизмов и механике машин / Под редакцией Фролова К. В. М. : Высшая школа, 1986. 295 с.
- 5 Соболев, А. Н. Теория механизмов и машин (проектирование и моделирование механизмов и их элементов): учебник / А. Н. Соболев, А. Я. Некрасов, А. Г. Схиртладзе. М.: КУРС, НИЦ ИНФРА-М, 2016. 256 с. // ZNANIUM.COM: электронно-библиотечная система. URL: http://www.znanium.com/catalog.php (дата обращения: 20.06.2021). Режим доступа: по подписке.
- 6 Матвеев, Ю. А. Теория механизмов и машин: учебное пособие / Ю. А. Матвеев, Л. В. Матвеева. М.: Альфа-М: ИНФРА-М, 2009. 320 с. // ZNANIUM.COM: электронно-библиотечная система. URL: http://www.znanium.com/catalog.php (дата обращения: 20.06.2021). Режим доступа: по подписке.

8.2 Дополнительная литература

- 1 Коннова, Г. В. Курсовое проектирование по теории механизмов и машин : учебное пособие для вузов / Г. В. Коннова, А. В. Ступин, В. К. Фурсов; под ред. Г. В. Конновой. Комсомольск-на-Амуре : Изд-во Комсомольского-на-Амуре гос. техн. ун-та, 2013. 107с.
- 2 Левитская, О. Н. Курс теории механизмов и машин : учебное пособие для мех. спец. вузов / О. Н. Левитская, Н. И. Левитский. 2-е изд., перераб. и доп. М.: Высшая школа, 1985. 279 с.
- 3 Курсовое проектирование по теории механизмов и машин : учебное пособие для инж.-техн. спец. вузов / Под ред. Г. Н. Девойно. Минск : Вышэйшая школа, 1986. 285с.
- 4 Леонов, И. В. Теория механизмов и машин (основы проектирования по динамическим критериям и показателям экономичности) : учебное пособие для вузов / И. В. Леонов, Д. И. Леонов. М. : Юрайт : Высшее образование, 2009. 239с.
- 5 Соболев, А. Н. Теория механизмов и машин: Лабораторный практикум / А. Н. Соболев, А. Г. Схиртладзе, А. Я. Некрасов. М.: КУРС, НИЦ ИНФРА-М, 2017. 160 с. //ZNANIUM.COM: электронно-библиотечная система. URL: http://www.znanium.com/catalog.php (дата обращения: 20.06.2021). Режим доступа: по подписке.
- 6 Смелягин, А. И. Теория механизмов и машин. Курсовое проектирование: учебное пособие / А. И. Смелягин. М.: НИЦ ИНФРА-М, 2014. 263с. //ZNANIUM.COM: электронно-библиотечная система. URL: http://www.znanium.com/catalog.php (дата обращения: 20.06.2021). Режим доступа: по подписке.

8.3 Методические указания для студентов по освоению дисциплины

- 1 Коннова, Г. В. Курсовое проектирование по теории механизмов и машин: учебное пособие для вузов / Г.В. Коннова, А. В. Ступин, В. К. Фурсов; под ред. Г. В. Конновой. Комсомольск-на-Амуре: Изд-во Комсомольского-на-Амуре гос. техн. ун-та, 2013. 107с.
- 2 Структурный синтез и анализ плоских рычажных механизмов : методические указания к лабораторной работе по дисциплине «Теория механизмов и машин» / сост. Г. В. Коннова. Комсомольск-на-Амуре : ФГБОУ ВО «КнАГТУ», 2017. 15 с.
- 3 Кинематический анализ планетарных механизмов : методические указания к лабораторной работе по дисциплине «Теория механизмов и машин» /сост. Г. В. Коннова. Комсомольск-на-Амуре : ФГБОУ ВО «КнАГТУ», 2017. –12 с.
- 4 Профилирование эвольвентных зубчатых колёс методом обката : методические указания к лабораторной работе по дисциплине «Теория механизмов и машин» /сост. Г. В. Коннова. Комсомольск-на-Амуре : ГОУ ВПО «КнАГТУ», 2010. –16 с.
- 5 Определение приведенного момента инерции механизмов экспериментальным методом : методические указания к лабораторной работе по дисциплине «Теория механизмов и машин» / сост. А. В. Ступин, В. К. Фурсов. Комсомольск-на-Амуре : ФГБОУ ВО «КнАГТУ», 2017. –16 с.

8.4 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

- 1 Электронно-библиотечная система ZNANIUM.COM. Договор № 4997 эбс ИКЗ 21 1 2727000769 270301001 0010 004 6311 244 от 13 апреля 2021 г. с 17 апреля 2021 г. по 16 апреля 2022 г.
- 2 Электронно-библиотечная система IPRbooks. Лицензионный договор № ЕП 44/4 на предоставление доступа к электронно-библиотечной системе IPRbooks ИКЗ 21 1 2727000769 270301001 0010 003 6311 244 от 05 февраля 2021 г. с 27 марта 2021 г. по 27 марта 2022 г.
- 3 Образовательная платформа Юрайт. Договор № ЕП44/2 на оказание услуг по предоставлению доступа к образовательной платформе ИКЗ 21 1 2727000769 270301001 0010001 6311 244 от 02 февраля 2021 г. с 07 февраля 2021 г. по 07 февраля 2022 г.
- 4 Электронно-библиотечная система eLIBRARY.RU (периодические издания). Договор № ЕП 44/3 на оказание услуг доступа к электронным изданиям ИКЗ 211 272 7000769 270 301 001 0010 002 6311 244 от 04 февраля 2021 г. с 04 февраля 2021 г. по 04 февраля 2030 г.
- 5 «Сетевая электронная библиотека технических вузов» на платформе ЭБС «Лань». Договор на оказание услуг № СЭБ НВ-228 от 14 июля 2020 г. с 14 июля 2020 г. по 31 декабря 2023 г.
- 6 Информационно-справочные системы «Кодекс»/ «Техэксперт». Соглашение о сотрудничестве № 17/21 от 31 мая 2021 г. с 31 мая 2021 г. по 31 мая 2022 г.

8.5 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1 Естественнонаучный образовательный портал федерального портала «Российское образование» [Электронный ресурс]. URL: http://en.edu.ru (дата обращения: 20.06.2021). Режим доступа: свободный.
- 2 КонсультантПлюс [Электронный ресурс]. URL: http://www.consultant.ru/ (дата обращения: 20.06.2021). Режим доступа: свободный.
- 3 Научная электронная библиотека «КиберЛенинка» URL: https://cyberleninka.ru/ (дата обращения: 20.06.2021). Режим доступа: свободный.
- 4 Информационная система «Единое окно доступа к образовательным ресурсам» URL: http://window.edu.ru/ (дата обращения: 20.06.2021). Режим доступа: свободный.

- 5 Единое окно доступа к образовательным ресурсам URL: http://window.edu.ru/.

8.6 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Таблица 5 – Перечень используемого программного обеспечения

Наименование ПО	Реквизиты / условия использования
OnlyOffice	Свободная лицензия, условия использования по ссылке: https://www.onlyoffice.com/ru/download-desktop.aspx
T-FLEX CAD 3D	Лицензионное соглашение № A00007306 от 15.10.2018, договор № 288-B-TCH-9-2018 от 26.09.2018
AutoCAD 2016-2019	Письмо о лицензионных правах на использование программного продукта AUTODESK по программе образовательной лицензии

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Таблица 6 – Перечень оборудования лаборатории

Аудитория	Наименование аудитории (лаборатории)	Используемое оборудование
201-2	Учебная, медиа	1 персональная ЭВМ с подключением в интернет; 1 экран с проектором
104-2	Лаборатория теории механизмов и машин, медиа	1 персональная ЭВМ; 1 экран с проектором; лабораторные стенды

При реализации дисциплины «Теория механизмов и машин» на базе профильной организации используется материально-техническое обеспечение, перечисленное в таблице 6.1.

Таблица 6.1 – Материально-техническое обеспечение дисциплины

•	
Стандартное или специализированное оборудование,	Назначение
обеспечивающее выполнение заданий	оборудования
Персональная ЭВМ с выходом в интернет, экран с проекто-	Проведение лекцион-
ром	ных и практических за-
	нятий
Установка ТММ-2А для определения приведенного момента	Проведение лаборатор-
инерции механизма (кривошипно-ползунный, кулисный, кри-	ной работы
вошипно-коромысловый рычажные механизмы)	
Модели ТММ 17/117/6 (четырёхзвенные рычажные меха-	Проведение практиче-
низмы; зубчатые, кулачковые, винтовые, фрикционные, хра-	ских занятий
повые, мальтийские и другие механизмы)	

Приборы ТММ 42 (для профилирования зубчатых колёс)	Проведение лаборатор-
	ной работы
Наборы зубчатых колёс (для обмера и расшифровки)	Проведение лаборатор- ной работы
Модели планетарных механизмов	Проведение лаборатор- ной работы
Модели рычажных механизмов (без из-быточных связей	Проведение лаборатор-
– механизмы долбежного станка, качающегося конвей-	ной работы
ера, двигателя внутреннего сгорания и др.)	
Модели кулачковых механизмов с по-ступательным и враща-	Проведение лаборатор-
тельным движениями выходного звена	ной работы
Лабораторный стенд для уравновешивания вращающихся	Проведение лаборатор-
звеньев	ной работы
Лабораторный стенд для балансировки ротора	Проведение лаборатор-
	ной работы

10.2 Технические и электронные средства обучения

Лекционные занятия.

Аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебно-наглядные пособия, тематические иллюстрации).

Для реализации дисциплины подготовлены следующие презентации:

- 1. Ступин АВ Лекция 1 Введение Структура механизмов 2021.ppsx.
- 2. Практ занятие 1 Классификация плоских механизмов 2021.ppsx.
- 3. Ступин АВ Лекция 2 Кинематический анализ рычажных механизмов 2021.ppsx.
- 4. <u>Ступин АВ Лекция 3 Кинематический анализ планетарных механизмов 2021.ppsx</u>.
- 5. Ступин AB Лекция 4 Динамический анализ механизмов 2021.ppsx.
- 6. Ступин АВ Лекция 5 Синтез механизмов 2021.ppsx.
- 7. Ступин AB Лекция 6 Синтез механизмов с низшими парами 2021.ppsx.

Практические занятия.

Аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер/ноутбук).

Лабораторные занятия.

Для лабораторных занятий используется аудитория № 104/2, оснащенная оборудованием для изучения кинематических пар, конструкции механизмов, проведения экспериментальных исследований.

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Теория механизмов и машин»

Направление подготовки	23.03.03 Эксплуатация транспортнотехнологических машин и комплексов
Направленность (профиль) образовательной программы	Автомобили: устройство, сервис и техническая эксплуатация
Квалификация выпускника	Бакалавр
Год начала подготовки (по учебному плану)	2021
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
2	4	3

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачёт	Кафедра «Машиностроение»

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Таблица 1 – Компетенции и планируемые результаты обучения по практике

Код и наименование	Планируемые результаты обучения по практике			
компетенции	Перечень знаний	Перечень умений	Перечень навыков	
	Общепрофе	ессиональные		
ОПК-1. Способен	Знает теоретические	Умеет применять	Владеет навыками	
применять есте-	основы естественно-	методы анализа и	теоретического и	
ственнонаучные и	научных и общеин-	моделирования, тео-	экспериментального	
общеинженерные	женерных дисци-	ретического и экспе-	исследования	
знания, методы ма-	плин	риментального ис-		
тематического ана-		следования при ре-		
лиза и моделирова-		шении профессио-		
ния в профессио-		нальных задач		
нальной деятельно-				
сти				

Таблица 2 – Паспорт фонда оценочных средств

Таолица 2 – Паспорт фо	опда оценочи		
Контролируемые разделы (темы) дисциплины	Формируе- мая компе- тенция	Наимено- вание оце- ночного средства	Показатели оценки
Раздел 1. Основные виды механизмов. Основные понятия ТММ. Структурный синтез и анализ механизмов. Раздел 2. Кинематический анализ механизмов. Задачи и методы. Кинематический анализ ры-	ОПК-1	Отчёты по лаборатор- ным рабо- там.	 Хорошее владение навыками проведения лабораторного эксперимента (подготовки к работе механизмов, считывания показаний с приборов и др.). Полнота и глубина анализа полученных результатов с опорой на теоретические положения. Правильное и аккуратное оформление отчета.
чажных, зубчатых и кулачковых механизмов. Раздел 3. Общие методы динамического анализа механизмов. Динамическая модель методельнамическая модельнамическая	ОПК-1	Конспект лекций сту- дента.	1) Полнота конспекта согласно тематике РПД. 2) Логическое построение и связность текста. 3) Аккуратность оформления текста и графического материала.
ханизма. Раздел 4. Общие методы синтеза механизмов. Целевые функции и	ОПК-1	занятиях (тесты).	 Полнота и глубина ответа на контрольный вопрос. Умение логически и технически грамотно построить ответ.
ограничения. Синтез рычажных, зубчатых и кулачковых механизмов.	ОПК-1	Расчетно- графическая работа	 Умение применять теоретические знания при выполнении индивидуального задания по рекомендованной методике. Полнота и глубина ответов на заданные вопросы при защите РГР. Логичность и правильность изложения материала. Достаточность пояснений и выводов.

2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

1 40,111	Наименова-	огическая ка Сроки					
	ние оценоч-	выполне-	Шкала	Критерии			
	ного средства	ния	оценивания	оценивания			
	• ' '		4, 5 ce	местр			
	Промежуточная аттестация в форме Зачет						
1	Отчёты по	В течение	5 балльная	5 баллов:			
	лаборатор- ным рабо- там	семестра	(всего 4 лаб. работ 4×5=20)	- отчёт по ЛР выполнен в полном объеме, аккуратно, в соответствии с требованиями РД 013-2016; - студент продемонстрировал прочное владе-			
				ние навыками проведения эксперимента и точно ответил на контрольные вопросы. 4 балла: — отчёт по ЛР выполнен в полном объеме, ак-			
				куратно, в соответствии с требованиями РД 013-2016; — студент продемонстрировал хорошее владение навыками проведения эксперимента и от-			
				ветил на теоретические вопросы, испытывая небольшие затруднения. 3 балла:			
				отчёт по ЛР выполнен в полном объеме, оформлен с устранимыми ошибками; студент продемонстрировал удовлетвори-			
				тельные навыки проведения эксперимента и не смог полностью объяснить полученные результаты.			
				2 балла: — отчёт по ЛР выполнен неряшливо, с отступлениями от требований РД 013-2016, имеется множество расчётных ошибок; — студент не может объяснить полученные результаты, ответить на контрольные вопросы.			
				0 баллов: работа не выполнена			
2	Конспект лекций сту-дента	В течение семестра	5	5 баллов: — все лекции в наличии; — конспект ведётся аккуратно и понятно; — тексты отличаются логическим построением и связностью; — студент легко ориентируется в пройденном материале.			
				4 балла: — все лекции в наличии; — конспект ведётся понятно и связно; — студент хорошо ориентируется в пройденном материале.			
				3 балла: — все лекции в наличии; — конспект не отличается связностью и аккуратностью; студент с трудом ориентируется в пройденном материале.			
				2 балла: — много пропущенных лекций; — тексты в конспекте разбираются с трудом; — студент плохо ориентируется в пройденном материале.			

				0 баллов: конспекта лекций нет.
3	Текущий опрос на занятиях (тесты)	В течение семестра	50	10 баллов: правильный и полный ответ. 8 баллов: правильный, но не полный ответ. 5 баллов: не полный с наводящими вопросами ответ. 3 балла: ответ не правильный. 0 баллов: ответа нет.
4	Расчетно- графиче- ская работа	В конце семестра	120	100 баллов: — задание выполнено в полном объеме в соответствии с РД 013-2016; — студент точно ответил на поставленные вопросы. 80 баллов: — задание выполнено в полном объеме в соответствии с РД 013-2016; — студент ответил на поставленные вопросы с небольшими затруднения. 60 баллов: — задание выполнено в соответствии с требованиями РД 013-2016; — имеет место неполнота изложения и анализа приведенной информации; — студент затрудняется с ответами на поставленные вопросы. 40 баллов: — задание выполнено с нарушениями требований РД 013-2016; — имеет место неполнота изложения информации; — студент не может ответить на поставленные вопросы. 0 баллов: задание не выполнено.
ИТО	<u> </u> ΣΟ:		195 баллов	о ошилова зидинне не выполнено.
MIO	10.	-	193 Gailiob	-

Критерии оценки результатов обучения по дисциплине:

Пороговый (минимальный) уровень для аттестации в форме зачета -75~% от максимально возможной суммы баллов

3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы

3.1 Задания для текущего контроля успеваемости

Расчетно-графическая работа (РГР)

Индивидуальные задания по РГР выдаются каждому обучающемуся из сборника заданий, разработанного автором рабочей программы. Задания к РГР состоят из трех задач: схемы различных механизмов машиностроительного назначения с необходимыми исходными данными для решения. Общие требования к выполнению расчетнографической работы изложены ниже.

Общие требования к выполнению РГР

Задача 1. Структурный анализ рычажного механизма (выполняется в пояснительной записке).

- 1. Вычертить схему механизма (без масштаба); пронумеровать звенья; буквами обозначить кинематические пары. Указать названия всех звеньев. Произвести анализ кинематических пар (указать количество кинематических пар и их класс).
 - 2. Определить степень подвижности механизма по формуле Чебышева.

- 3. Если в механизме присутствуют избыточные (пассивные) связи (или лишние степени свободы), необходимо избавиться от них и повторить расчет.
- 4. При наличии в механизме высших кинематических пар четвёртого класса p_4 произвести их замену на низшие кинематические пары пятого класса p_5 .
- 5. Определить степень подвижности вновь образованного механизма по формуле Чебышева.
- 6. Разбить механизм на группы Ассура, определить класс каждой группы и класс всего механизма.
 - 7. Записать формулу строения механизма.

Задача 2. Кинематический анализ рычажного механизма (выполняется на листе формата А3, расчеты – в пояснительной записке)

- 1. Выбрать масштаб и в масштабе построить схему рычажного механизма по заданным длинам звеньев.
 - 2. Построить план скоростей и определить угловые скорости всех звеньев.
 - 3. Построить план ускорений и определить угловые ускорения всех звеньев.

Задача 3. Кинематический анализ зубчатого механизма (выполняется на листе формата А3, расчеты – в пояснительной записке):

- 1. Определить степень подвижности зубчатого механизма по формуле Чебышева.
- 2. Разбить механизм на планетарную и простую ступени (в скобках указать номера звеньев, входящих в ступени).
- 3. Используя условие соосности для планетарного механизма, определить незаданные числа зубьев зубчатых колёс.
- 4. Составить формулу для определения передаточного отношения механизма и вычислить передаточное отношение механизма по известным числам зубьев колес z_i , модулю зацепления m и частоте вращения ведущего звена n_1 .
 - 5. Определить частоты вращения всех звеньев механизма аналитически.
- 6. Подсчитать диаметры зубчатых колес $d_i = m \cdot z_i$; вычертить в масштабе μ_l схему зубчатого механизма.
- 7. Построить план линейных скоростей. На плане скоростей указать, каким звеньям принадлежит данный закон распределения скоростей.
- 8. Построить план угловых скоростей. Вычислить частоты n_i вращения всех звеньев механизма графически. Сравнить с результатами, полученными аналитическим методом.

Задание 1 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

Механизм управления клапаном

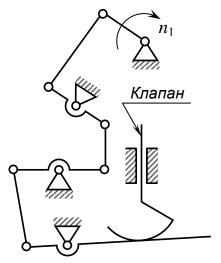


Рисунок 1 – К задаче 1

Механизм с качающимся ползуном

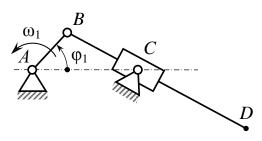


Рисунок 2 – К задаче 2

А.В. Ступин

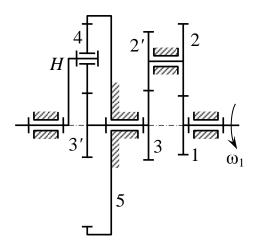


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

Руководитель

	K	задач	e 2				К за,	даче	3		
ω _{1,} рад/с	φ ₁ , град	l_{AB} ,	l_{AC} ,	l_{BD} ,	<i>n</i> ₁ , об∕мин	m,	$z_1 = z_{3'}$	\mathbf{z}_2	$z_{2'} = z_4$	Z ₃	Z ₅
20	60	0,4	0,8	1,5	2000	3	20	30	50	40	_

Задание выдано студенту	 группы	

Задание 2 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

Механизм парораспределения паровоза

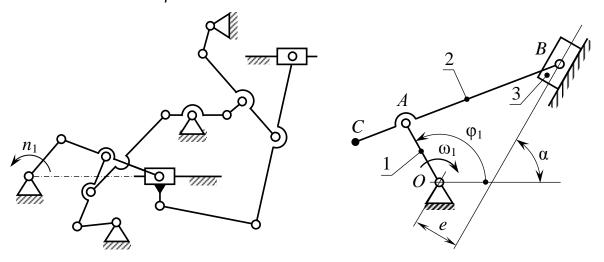


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

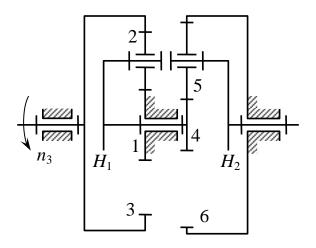


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

		Кз	адаче			К	зада	че 3						
$egin{array}{c} \omega_{1,} \\ \mathrm{рад/} \\ \mathrm{c} \end{array}$	φ ₁ , град	α, гра д	$l_{O\!A}, \ { m M}$	$l_{AB},$ M	l_{AC} ,	е, м	<i>n</i> ₃ , об/ми н	m,	z_1	\mathbf{z}_2	z_3	\mathbf{Z}_4	\mathbf{Z}_5	\mathbf{Z}_6
12	100	40	0,06	0,1 4	0,0	0,0	200	3	16	_	80	20	_	90

Задание выдано студенту	группы
Руководитель	А.В. Ступин

Задание 3 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

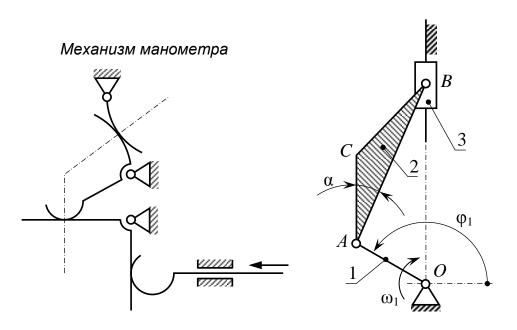


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

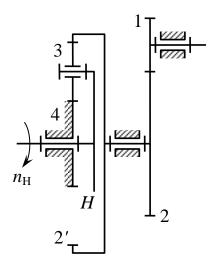


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

		К за	даче 2			К задаче 3						
$\omega_{1,}$ рад/с	φ ₁ , град	α, гра Д	$l_{O\!A}, \ { m M}$	$l_{AB}, \ ext{M}$	$l_{AC},$ M	<i>n</i> ₁ , об/ми н	m,	z_1	\mathbf{z}_2	z _{2'}	\mathbf{Z}_3	\mathbf{Z}_4
10	130	20	0,06	0,20	0,06	100	3	14	42	_	25	35

Задание выдано студенту	группы
Руководитель	А.В. Ступин

Задание 4 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

Механизм замка самолётного шасси

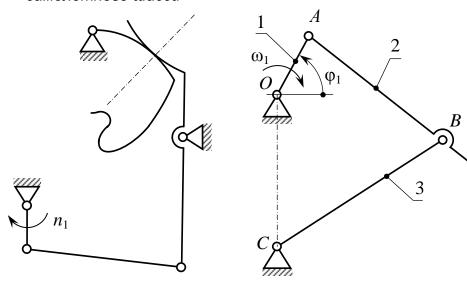


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

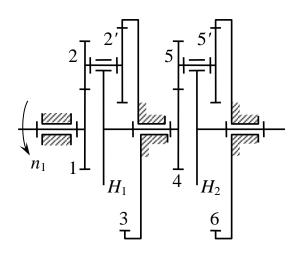


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

		Кз	адаче	2				К зад	даче 3			
$egin{array}{c} \omega_{1,} \ paд/ \ c \end{array}$	φ ₁ , град	$l_{O\!A},$ M	$l_{AB},$ M	l_{OC} ,	l_{BE} ,	L_{BC} ,	<i>n</i> ₁ , об∕ми н	m,	$z_1 = z_4$	$z_2 = z_5$	$z_{2'} = z_{5'}$	z ₃ ; z ₆
5	45	0,06	0,14	0,1	0,0 6	0,1 6	700	3	32	18	26	

Задание выдано студенту	группы
Руководитель	А.В. Ступин
ГУКОВОДИТСЛЬ	A.D. CIVIIIH

Задание 5 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

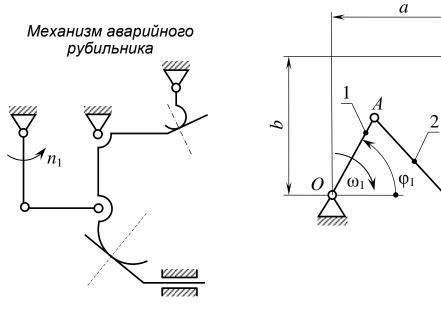


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

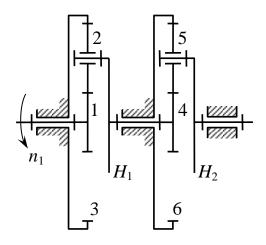
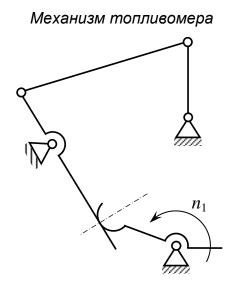


Рисунок 3 – К задаче 3


Таблица 1 – Исходные данные к задачам 2 и 3

	К задаче 2								К задаче 3					
ω _{1,} рад/с	φ ₁ , град	$l_{O\!A}, \ { m M}$	l_{AB} ,	$l_{BC},$ M	$l_{BD},$ M	<i>b</i> ,	а, м	<i>n</i> ₁ , об∕ми н	<i>m</i> ,	$z_1 = z_4$	$z_2 = z_5$	$z_3; z_6$		
10	60	0,04	0,2	0,18	0,04	0,09	0,12	1600	3	25	30	_		

Задание выдано студенту	 группы _	

Руководитель ______ А.В. Ступин

Задание 6 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

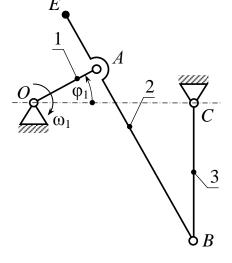


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

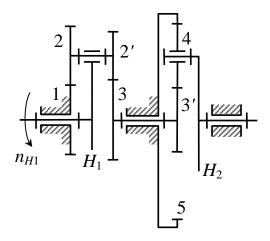


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

		Кз	адаче	e 2]	К зад	цаче :	3		
$egin{array}{c} \omega_{1,} \ \mathrm{pag/} \ \mathrm{c} \end{array}$	φ ₁ , град	$l_{O\!A},$ M	$l_{AB},$ M	$l_{OC},$ M	l_{BC} ,	l _{AE} ,	<i>n_{H1}</i> , об/ми н	m,	z_1	z_2	$z_{2'}$	z_3	$z_{3'}=z_4$	\mathbf{Z}_5
5	45	0,04	0,15	0,07	0,12	0,05	750	3	28	20	18	30	25	_

Задание выдано студенту	группы
Руководитель	А.В. Ступин

Задание 7 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

Механизм шасси самолёта

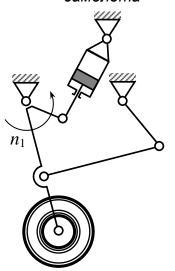


Рисунок 1 – К задаче 1

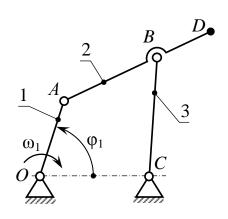


Рисунок 2 – К задаче 2

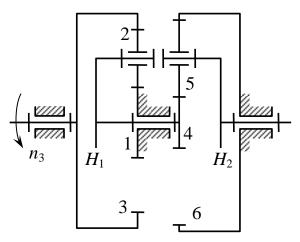


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

	К задаче 2			К задаче 3							
$egin{array}{c} \omega_{1,} \ \mathrm{pag/} \ \mathrm{c} \end{array}$	φ ₁ , град	$l_{O\!A}=l_{B\!D},$ M	$l_{AB}=l_{OC}=\ l_{BC}, \ ext{M}$	<i>n</i> ₃ , об/ми н	m,	z_1	\mathbf{z}_2	z_3	\mathbf{Z}_4	\mathbf{Z}_5	\mathbf{z}_6
10	60	0,03	0,06	900	2	25	35		20	40	_

Задание выдано студенту	группы
-------------------------	--------

Руководитель ______ А.В. Ступин

Задание 8 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

Механизм ротационного насоса

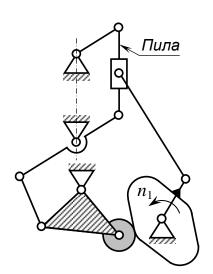


Рисунок 1 – К задаче 1

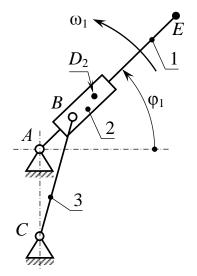


Рисунок 2 – К задаче 2

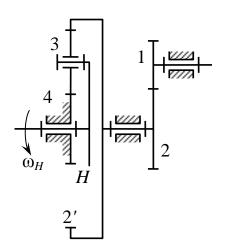


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

К задаче 2					К задаче 3							
ω _{1,} рад/с	φ ₁ , град	$l_{AE}, \ m_M$	l_{BD_2} , M	l_{AC} , M	$l_{BC},$ M	n_1 , об/мин	m, MM	z_1	\mathbf{z}_2	$z_{2'}$	\mathbf{z}_3	\mathbf{Z}_4
80	45	0,2	0,016	0,05	0,08	100	3	18	42	_	20	25

Задание выдано студенту	группы
Руководитель	А.В.Ступин

Задание 9 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

Суммирующий механизм с избыточными связями

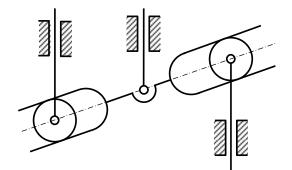


Рисунок 1 – К задаче 1

Механизм с качающимся ползуном

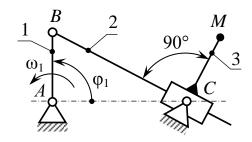


Рисунок 2 – К задаче 2

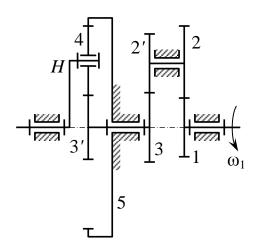


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

	К задаче 2				К задаче 3							
$\omega_{1,}$	φ1,	l_{AB} ,	l_{AC} ,	l_{CM} ,	n_1 ,	т,	$z_1 = z_{3'}$	\mathbf{Z}_2	Z _{2'}	\mathbf{Z}_{4}	\mathbf{Z}_3	Z_5
рад/с	град	M	M	M	об/мин	MM					3	3
20	90	0,1	0,17	0,1	12000	4	18	25	20	22	28	_

Задание выдано студенту	группы
Руководитель	А.В. Ступин

Задание 10 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

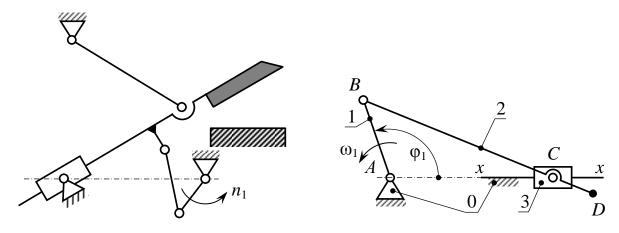


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

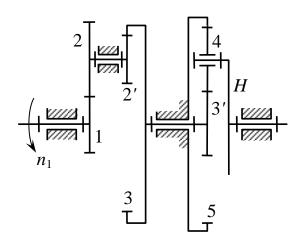


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

К задаче 2			К задаче 3									
ω _{1,} рад/с	φ ₁ , град	l_{AB} ,	l_{BC} ,	l_{CD} ,	<i>n</i> ₁ , об∕ми н	m,	$z_1 = z_{3'}$	z_2	Z _{2'}	z_3	z_4	Z_5
20	120	0,04	0,08	0,02	850	3	20	40	30	80	30	_

Задание выдано студенту	группы
Руковолитель	А В Ступин

Задание 11 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

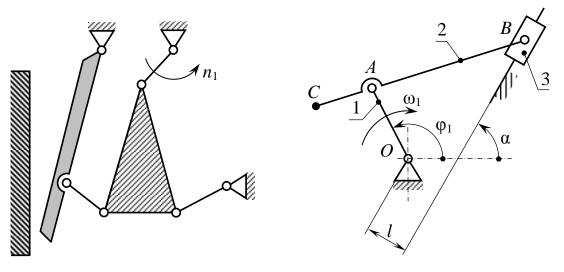


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

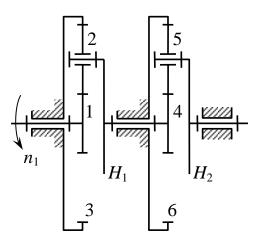


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

	К задаче 2						К задаче 3					
ω _{1,} рад/с	φ ₁ , град	α, град	$l_{O\!A}, \ { m M}$	$l_{AB},$ M	l_{AC} ,	<i>l</i> , м	<i>n</i> ₁ , об∕ми н	<i>m</i> ,	$z_1 = z_4$	z_2	z_5	$z_3; z_6$
20	120	50	0,06	0,2	0,03	0,02	900	4	20	40	45	

Задание выдано студенту	 группы
Руковолитель	Δ R Ступин

Задание 12 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

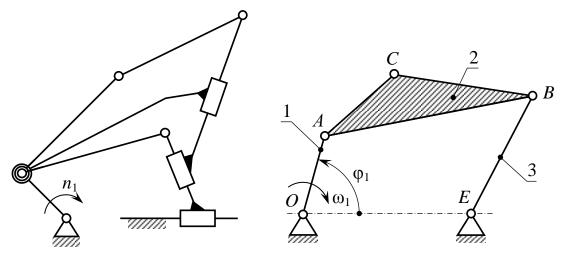


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

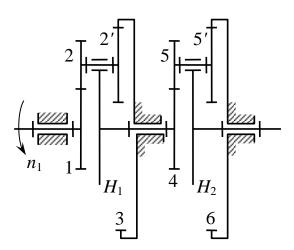


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

	К задаче 2							К задаче 3							
$egin{array}{c} \omega_{1,} \\ \mathrm{pag}/ \\ \mathrm{c} \end{array}$	φ ₁ , гра Д	l_{OA} ,	l_{AB} ,	l_{OE} ,	l_{BE} ,	L_{BC} ,	L_{AC} ,	<i>n</i> ₁ , об∕ми н	<i>т</i> ,	z ₁ ; z ₄	z_2	z_5	$z_{2'}$	Z _{5′}	$z_3;$ z_6
5	100	0,05	0,16	0,11	0,14	0,10	0,08	950	4	20	32	34	36	40	_

Задание выдано студенту _	группы
Руководитель	А.В. Ступин

Задание 13 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

Механизм Костицына

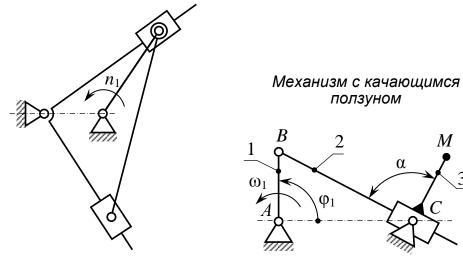


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

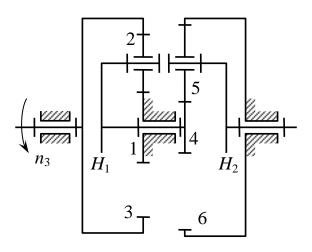


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

	К задаче 2						К задаче 3							
ω _{1,} рад/с	φ ₁ , град	α, град	$l_{AB}, \ ext{M}$	$l_{BC},$ M	$l_{CM}, \ ext{M}$	<i>n</i> ₃ , об/ми н	m,	z_1	\mathbf{z}_2	z_3	\mathbf{Z}_4	\mathbf{Z}_5	\mathbf{Z}_6	
80	90	90	0,10	0,18	0,1	350	4	35	-	85	20		10 0	

Задание выдано студенту	 группы
Руковолитель	A В Ступин

Задание 14 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

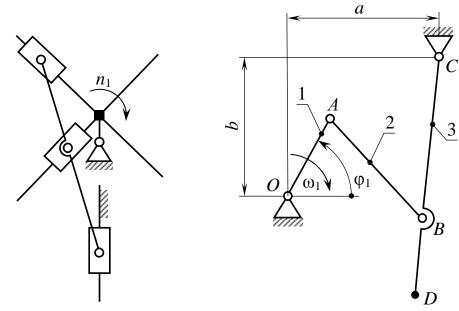


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

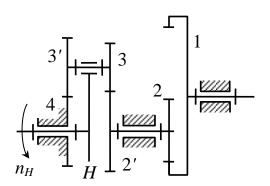


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

	К задаче 2								К задаче 3							
ω _{1,} рад/с	φ ₁ , град	$l_{O\!A}, \ _{ m M}$	l_{AB} ,	l_{BC} ,	l_{BD} ,	<i>b</i> , м	а, м	<i>п_Н</i> , об/ми н	<i>т</i> ,	z_1	z_2	$z_{2'}$	z_3	Z _{3'}	z_4	
20	40	0,02	0,08	0,12	0,02	0,08	0,05	1200	3	80	30	35	20	2 2	_	

Задание выдано студенту	группы
Руковолитель	АВ Ступин

Задание 15 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

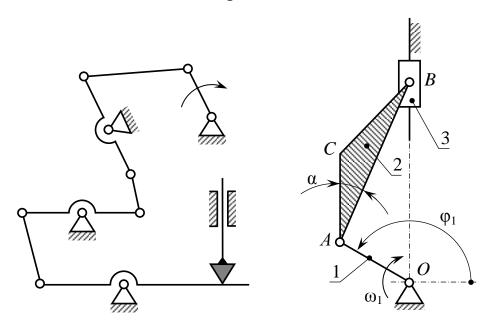


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

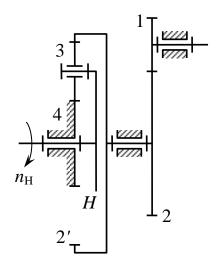


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

			К задаче 3									
ω _{1,} рад/с	φ ₁ , град	α, гра д	$l_{O\!A}, \ { m M}$	$l_{AB}, \ ext{M}$	$l_{AC},$ M	<i>n</i> ₁ , об∕ми н	m, MM	z_1	\mathbf{z}_2	$z_{2'}$	\mathbf{Z}_3	\mathbf{Z}_4
20	30	25	0,04	0,15	0,05	250	3	18	45	100	_	20

Задание выдано студенту	группы
Руководитель	А.В. Ступин

Задание 16 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

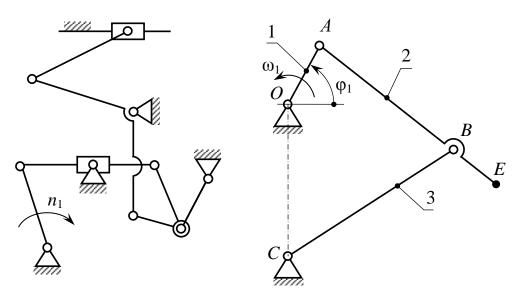


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

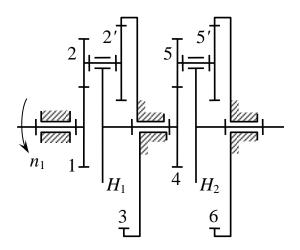


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

	К задаче 2							К задаче 3							
$egin{array}{c} \omega_{1,} \ paд/ \ c \end{array}$	φ ₁ , град	$l_{O\!A}, \ { m M}$	$l_{AB},$ M	l_{OC} ,	l_{BE} ,	L_{BC} ,	<i>n</i> ₁ , об∕ми н	m,	$z_1 = z_4$	$z_2 = z_5$	z _{2'} ; z _{5'}	$z_3 = z_6$			
15	120	0,05	0,12	0,1 0	0,0 6	0,1	850	4	36	20	_	86			

Задание выдано студенту	 группы
Руковолитель	А.В. Ступин

Задание 17 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

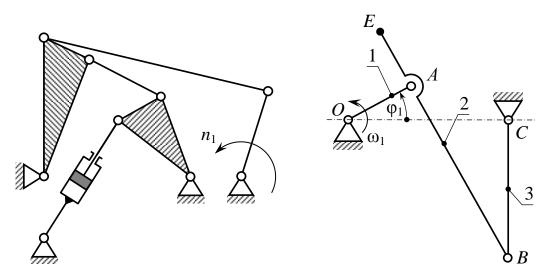


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

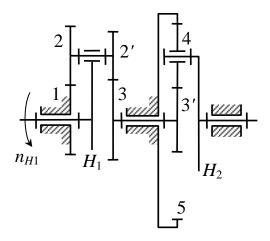


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

	К задаче 2					К задаче 3									
$egin{array}{c} \omega_{1,} \ \mathrm{pag}/\ \mathrm{c} \end{array}$	φ ₁ , град	$l_{O\!A}, \ _{ m M}$	$l_{AB},$ M	$l_{OC},$ M	l_{BC} ,	l _{AE} ,	<i>п_{Н1}</i> , об∕ми н	<i>m</i> ,	z_1	z_2	$z_{2'}$	z_3	Z _{3'}	z_4	\mathbf{Z}_5
10	90	0,05	0,10	0,08	0,08	0,06	800	4	30	22	24	_	25	_	85

Задание выдано студенту	 группы
Руководитель	А.В. Ступин

Задание 18 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

Механизм ротационного насоса

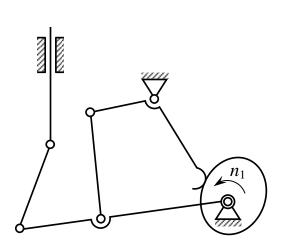


Рисунок 1 – К задаче 1

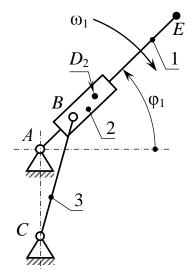


Рисунок 2 – К задаче 2

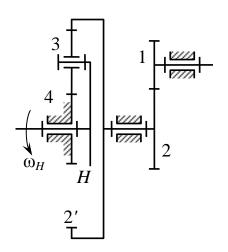


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

К задаче 2						К задаче 3						
ω _{1,} рад/с	φ ₁ , град	$l_{AE}, \ m_M$	l_{BD_2} , M	l_{AC} , M	$l_{BC},$ M	n_1 , об/мин	m, MM	z_1	\mathbf{z}_2	$z_{2'}$	\mathbf{Z}_3	\mathbf{Z}_4
60	135	0,2	0,016	0,05	0,08	140	4	22	54	85	_	25

Задание выдано студенту	группы
Руководитель	А.В.Ступин

Задание 19 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

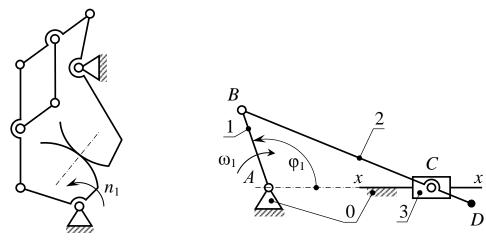


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

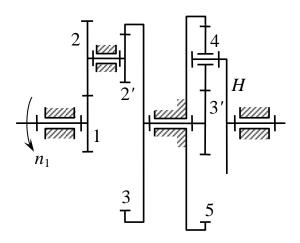


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

		К задаче 3										
ω _{1,} рад/с	φ ₁ , град	l_{AB} ,	l_{BC} ,	l_{CD} ,	<i>n</i> ₁ , об/ми н	m,	$z_1 = z_{3'}$	z_2	Z _{2'}	z_3	z_4	\mathbf{Z}_5
10	60	0,06	0,12	0,03	850	3	20	40	30	_		80

Задание выдано студенту	группы
Руковолитель	А В <i>С</i> тупин

Задание 20 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

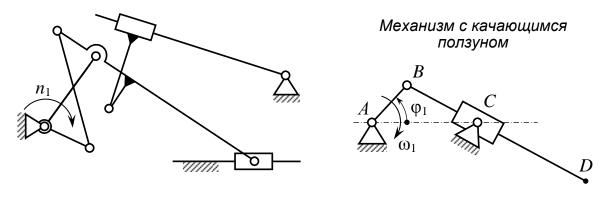


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

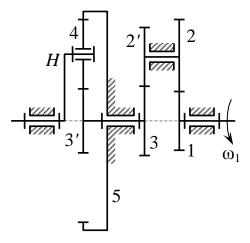


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

	задач	К задаче 3									
ω _{1,} рад/с	φ ₁ , град	l_{AB} ,	l_{AC} ,	l_{BD} ,	<i>n</i> ₁ , об∕мин	<i>т</i> ,	$z_1 = z_{3'}$	\mathbf{z}_2	$z_{2'} = z_4$	\mathbf{z}_3	\mathbf{Z}_5
10	90	0,6	1,1	1,4	1500	4		40	30	40	85

Задание выдано	студенту	группы
Руководитель		А.В. Ступин

Задание 21 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

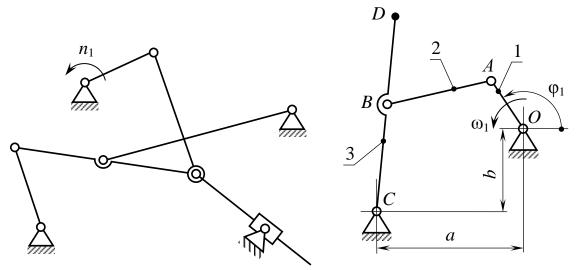


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

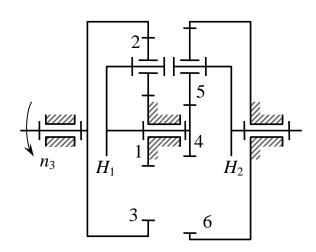


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

	К задаче 2							К задаче 3							
$egin{array}{c} \omega_{1,} \ paд/\ c \end{array}$	φ ₁ , гра д	$l_{O\!A}$,	$l_{AB},$ M	$egin{array}{c} l_{BC} \ , \ M \end{array}$	l_{BD} ,	а, м	<i>b</i> , м	<i>n</i> ₃ , об/ми н	m,	z_1	\mathbf{z}_2	z_3	\mathbf{Z}_4	\mathbf{Z}_5	\mathbf{Z}_6
15	120	0,06	0,12	0,14	0,1 2	0,18	0,0 8	250	5	_	40	11 0	_	50	12 5

Задание выдано студенту	 группы
Руководитель	А.В. Ступин

Задание 22 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

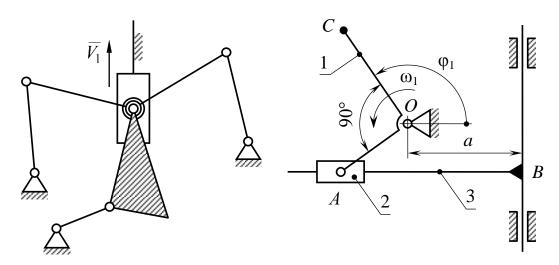


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

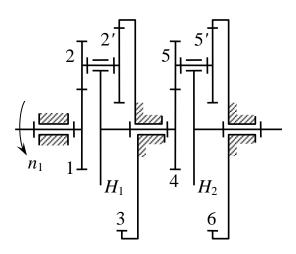


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

	К задаче 2					К задаче 3								
$egin{array}{c} \omega_{1,} \ \mathrm{pag}/\ \mathrm{c} \end{array}$	φ ₁ , гра Д	$l_{O\!A},$ M	$l_{OC},$ M	а, м	<i>n</i> ₁ , об∕ми н	m,	z_1	z_2	z_4	z_5	$z_{2'} = z_{5'}$	$z_3;$ z_6		
10	120	0,0 6	0,1	0,12	850	4	30	40	35	45	50	_		

группы
АВ Ступин

Задание 23 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

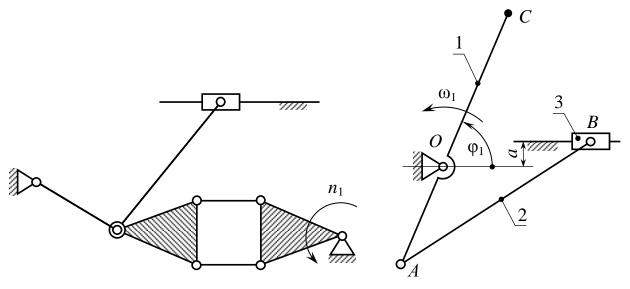


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

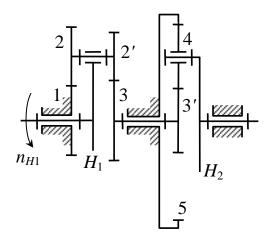


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

К задаче 2						К задаче 3							
$\omega_{1,}$ рад/с	φ ₁ , град	$l_{O\!A}, \ { m M}$	$l_{AB},$ M	l_{OC} ,	$l_{AE},$ M	<i>n_{H1}</i> , об/ми н	m,	z_1	z_2	$z_{2'}$	z_3	$z_{3'}=z_4$	\mathbf{Z}_5
10	60	0,06	0,15	0,10	0,03	850	5	25	30	_	40	35	_

Задание выдано студенту	 группы	

Руководитель ______ А.В. Ступин

Задание 24 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

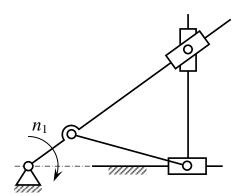


Рисунок 1 – К задаче 1

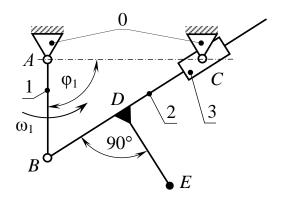


Рисунок 2 – К задаче 2

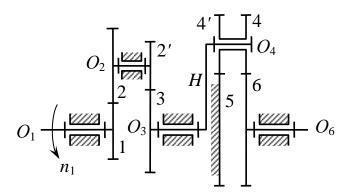


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

	К задаче 2					К задаче 3								
ω _{1,} рад/с	φ ₁ , град	$l_{AB} = l_{BD} = l_{DE}$ M	l_{AC} ,	<i>n</i> ₁ , об∕ми н	m,	z_1	z_2	$z_{2'}$	z_3	z_4	$z_{4'}$	Z_5	\mathbf{Z}_6	
40	90	0,1	0,2	960	5	40	80	44	88	44	44	63	_	

Задание выдано студенту		группы
	<u> </u>	
Руководитель		А.В. Ступин

Задание 25 к расчетно-графической работе по дисциплине «Теория механизмов и машин»

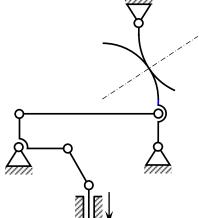


Рисунок 1 – К задаче 1

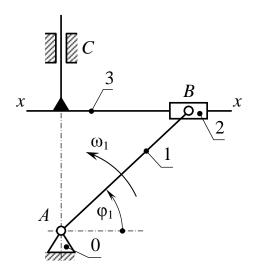


Рисунок 2 – К задаче 2

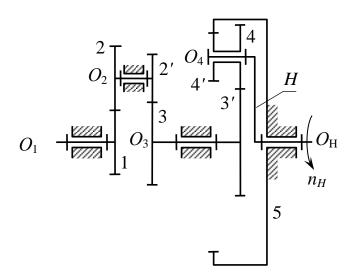


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

К	задаче 2	2		К задаче 3									
$\omega_{1,}$ рад/с	ф1, град	l_{AB} , M	n_H , об/мин	m, mm	z_1	z_2	$z_{2'}$	z_3	Z _{3'}	<i>Z</i> 4	$z_{4'}$	<i>Z</i> ₅	
120	45	0,1	100	5	22	22	20	24	45	25	20	_	

Задание выдано студенту	группы
Руководитель	А.В. Ступин

Задание 26 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

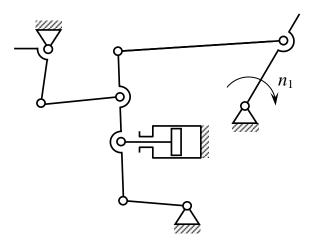


Рисунок 1 – К задаче 1

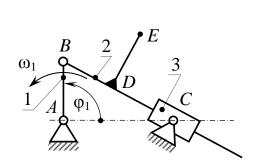


Рисунок 2 – К задаче 2

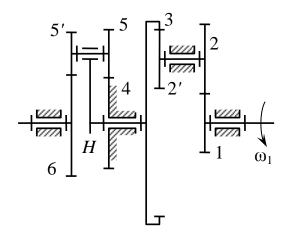


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

К задаче 2						К задаче 3									
ω _{1,} рад/с	φ ₁ , град	l_{AB} ,	l_{AC} ,	$l_{BD},$ M	l_{DE} ,	n_1 , об/мин	<i>m</i> ,	z_1	\mathbf{z}_2	z _{2'}	\mathbf{z}_3	\mathbf{z}_4	Z 5	Z _{5′}	Z ₆
20	90	0,1	0,2	0,1	0,1	600	5	20	45	20	_	47	18	18	47

 Задание выдано студенту
 группы

 Руководитель
 А.В. Ступин

Задание 27 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

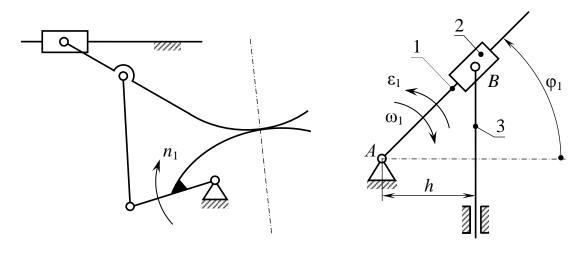


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

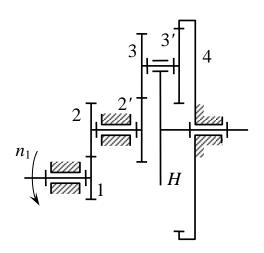


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

	К зад	К задаче 3									
$\omega_{1,}$	φ ₁ ,	ε_1 ,	h,	n_1 ,	т,	7.	7.	Z2'	7.	Z _{3'}	\mathbf{Z}_4
рад/с	град	pag/c^2	M	об/мин	MM	<i>λ</i> ₁	\mathbf{Z}_2	<i>√</i> 2′	\mathbf{Z}_3	~3′	L 4
10	45	50	0,1	400	5	20	30	40	30	35	_

Задание выдано студенту	 группы
Руководитель	А.В. Ступин

Задание 28 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

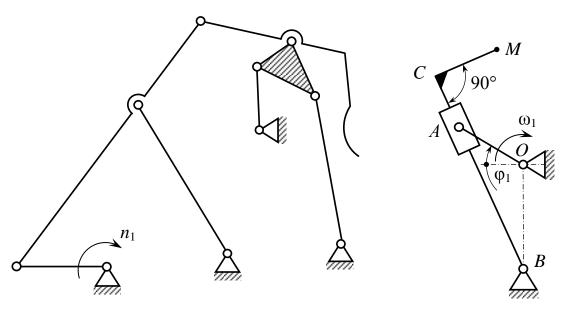


Рисунок 1 – К задаче 1

Рисунок 2 – К задаче 2

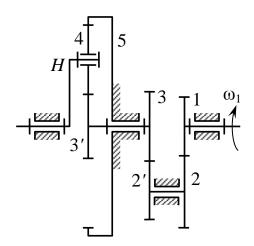


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

	К задаче 2					К задаче 3								
ω _{1,} рад/с	φ ₁ , град	l_{OA} , M	l_{OB} ,	l_{BC} , M	<i>l_{СМ}</i> , М	<i>n</i> ₁ , об/мин	<i>m</i> ,	z_1	\mathbf{z}_2	$z_{2'}$	\mathbf{Z}_3	Z _{3'}	\mathbf{Z}_4	\mathbf{Z}_5
15	30	0,04	0,08	1,5	0,5	1500	5	25	35	28	44	40	_	110

Задание выдан	о студенту	группы
Руководитель		А.В. Ступин

Задание 29 к расчетно-графической работе по дисциплине «*Теория механизмов и машин*»

Механизм Артоболевского для воспроизведения кривой Жерабека

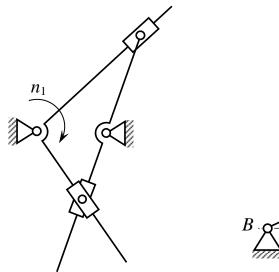


Рисунок 1 – К задаче 1

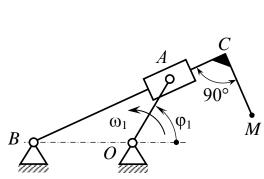


Рисунок 2 – К задаче 2

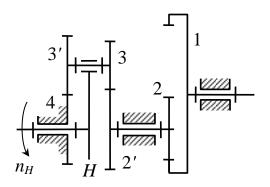


Рисунок 3 – К задаче 3

Таблица 1 – Исходные данные к задачам 2 и 3

	К задаче 2					К задаче 3							
$\omega_{1,}$	φ ₁ ,	l_{OA} ,	l_{OB} ,	l_{BC} ,	l_{CM} ,	$n_{\rm H}$,	m,	z_1	\mathbf{z}_2	$z_{2'}$	\mathbf{z}_3	Z _{3'}	\mathbf{Z}_4
рад/с	град	M	M	M	M	об/мин	MM						
10	60	0,03	0,07	1,2	0,3	1200	4	80	30	35	1	22	33

Задание выдано студенту	группы
Руководитель	А.В. Ступин

Вопросы для подготовки к защите расчетно-графической работы

Тема 1. Структура плоских рычажных механизмов

- 1. Каково назначение механизма и машины?
- 2. Что называется звеном, кинематической парой, кинематической цепью?
- 3. Как определить число степеней свободы кинематической пары?
- 4. Как определить степень подвижности плоского механизма?
- 5. Что называется группой Ассура?
- 6. Как определить класс и порядок группы Ассура?
- 7. Каким условиям должны удовлетворять группы Ассура?
- 8. Как образуются механизмы из групп Ассура? (Задача структурного синтеза).
- 9. Каков порядок разложения многозвенного механизма на группы Ассура? (Задача структурного анализа).

Тема 2. Кинематика плоских рычажных механизмов

- 1. Задачи и методы кинематического исследования механизма.
- 2. Как определить крайние положения механизма?
- 3. В чем преимущества и недостатки аналитического и графического методов кинематического анализа?
 - 4. Что такое вычислительный масштаб? Как найти масштаб плана скоростей?
- 5. Как составить векторное уравнение для нахождения скорости или ускорения шарнирной точки механизма?
- 6. Как определяются по величине и направлению угловые скорости и угловые ускорения звеньев?
- 7. Как определяются по величине и направлению нормальные, касательные и кориолисовы ускорения?
- 8. Как, пользуясь свойством подобия, определить скорость или ускорение заданной точки звена?

Тема 3. Динамика плоских рычажных механизмов

- 1. Основные задачи динамического анализа механизмов.
- 2. Как классифицируют силы, действующие на звенья механизма?
- 3. Как определяются силы инерции и моменты пар сил инерции при поступательном, вращательном и плоскопараллельном движении?
 - 4. Почему силовой расчет механизма проводят по группам Ассура?
 - 5. Почему силовой расчет механизма нельзя начинать с ведущего звена?
 - 6. Как определяют силы трения в кинематических парах механизма?
 - 7. Составить уравнение равновесия группы Ассура II класса.
 - 8. В чем сущность методов приведения сил и масс к звену приведения?
 - 9. Что такое к.п.д. механизма?
 - 10. Как определить уравновешивающую силу методом планов сил?
 - 11. Почему реакции кинематических пар не переносят на рычаг Жуковского?
 - 12. Что такое статическая и динамическая неуравновешенность?

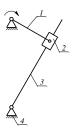
Тема 4. Анализ и синтез зубчатых механизмов

- 1. Основные параметры зубчатого колеса и зубчатого зацепления: модуль, шаг, высота зуба, толщина зуба по делительной окружности, межосевое расстояние, радиальный зазор.
- 2. Каковы методы нарезания зубьев зубчатых колес; какие зуборезные инструменты используют при нарезании зубьев?
- 3. Что называется передаточным отношением и когда оно имеет знак «+», а когда «-»?
 - 4. Какие зубчатые механизмы называют редукторами, какие мультипликаторами?
- 5. Цель применения метода обращения движения при кинематическом анализе планетарных механизмов.

- 6. Определение передаточного отношения рядовых и планетарных механизмов аналитическим и графическим способами.
 - 7. Достоинства и недостатки планетарных механизмов.
 - 8. В чем заключаются условия соосности, сборки и соседства?
 - 9. Для каких целей применяют планетарные и дифференциальные механизмы?
- 10. Как преобразовать планетарный механизм в простой зубчатый или в дифференциальный?
 - 11. Объяснить устройство и работу планетарного механизма.
- 12. Показать высшие и низшие кинематические пары в зубчатом механизме, определить степень его подвижности.
 - 13. Построить план линейных скоростей зубчатого механизма.
- 14. Как, используя план чисел оборотов, найти частоту вращения сателлита или выходного звена?

Задания тестов для текущего контроля

Тема 1 «Структура механизмов»

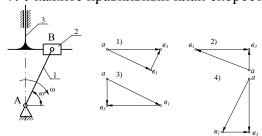

- 1. Кто из выдающихся деятелей культуры эпохи Возрождения разработал проекты конструкций механизмов ткацких станков, печатных машин?
 - а) Пафнутий Чебышев; б) Леонардо да Винчи; в) Николай Мерцалов;
 - г) Николай Жуковский.
- 2. Именем какого русского учёного названа структурная формула плоских механизмов?
 - а) Л. В. Ассур; б) П. Л. Чебышев; в) Н. Е. Жуковский; г) Ф. Рело.
 - 3. Звеном называется...
- а) механизм; б) деталь или группа деталей, соединённых между собой жёстко; в) машина; г) электродвигатель.
 - 4. Ползуном называют звено, совершающее...
 - а) сложное движение относительно стойки;
 - б) вращательное движение вокруг стойки;
 - в) качательное движение относительно стойки;
 - г) поступательное движение относительно стойки.
 - 5. Кривошипом называется звено, совершающее относительно стойки движение:
 - а) возвратно-поступательное; б) качательное;
 - в) вращательное; г) сложное.
 - 6. Шатуном называют звено...
 - а) перемещающееся в направляющих стойки;
 - б) подвижное звено механизма с направляющими;
 - в) образующее пары только с подвижными звеньями;
 - г) совершающее качательное движение относительно стойки.
 - 7. Кинематической парой называется:
 - а) подвижное соединение двух соприкасающихся звеньев;
 - б) подвижное соединение трёх соприкасающихся звеньев;
 - в) неподвижное соединение двух звеньев;
 - г) неподвижное соединение трех звеньев.
 - 8. Примером двухподвижной кинематической пары (4^{го} класса) является:
 - а) цилиндр на плоскости; б) шар на плоскости;
 - в) сферический шарнир; г) цилиндр в цилиндре.
 - 9. Механизмом называется:
 - а) устройство, предназначенное для выполнения работы;
 - б) связанная система звеньев, образующих между собой кинематические пары;

- в) несколько подвижных звеньев, связанных кинематическими парами;
- г) система тел, предназначенная для преобразования движения одного или нескольких твёрдых тел в требуемые движения других твёрдых тел.
 - 10. Машиной называется:
- а) система тел, предназначенная для преобразования движения одного или нескольких твёрдых тел в требуемые движения других твёрдых тел;
- б) устройство, выполняющее механические движения для преобразования энергии, материалов и информации с целью замены или облегчения физического или умственного труда человека;
 - в) связанная система звеньев, образующих между собой кинематические пары;
 - г) устройство, предназначенное для выполнения работы.
 - 11. Класс кинематической пары определяется...
 - а) числом замкнутых контуров;
 - б) числом звеньев в кинематической паре;
- в) числом связей, наложенных на относительное движение звеньев кинематической пары;
 - г) числом возможных движений одного звена относительно другого.
 - 12. Шаровый шарнир является кинематической парой:
 - а) III класса, высшей;
 - б) IV класса, низшей;
 - в) ІІ класса, высшей;
 - г) III класса, низшей.



- а) два;
- б) четыре;
- в) три;
- г) одно.
- 14. Электродвигатель является машиной...
- а) технологической; б) информационной;
- в) грузоподъёмной; г) энергетической.
- 15. Цилиндрическая пара это...
- а) трёхподвижная пара с двумя вращательными и одним поступательным движениями;
 - б) двухподвижная пара, допускающая два вращательных движения;
- в) двухподвижная пара, допускающая вращательное и поступательное движение одного звена относительно другого;
- г) трёхподвижная пара с двумя поступательными и одним вращательным движениями.
 - 16. Плоскостная пара это...
- а) трёхподвижная пара, допускающая одно вращательное и два поступательных движения одного звена относительно другого;
- б) трёхподвижная пара с двумя вращательными и одним поступательным движениями:
 - в) двухподвижная пара с двумя поступательными движениями;
 - г) двухподвижная пара с поступательным и вращательным движениями.
 - 17. Какое из перечисленных соединений является кинематической парой?
 - а) две сваренные детали; б) две спаянные детали;
 - в) две склепанные детали; г) вал в подшипнике.
 - 18. Металлорежущий станок является машиной...
 - а) энергетической; б) технологической;
 - в) транспортной; г) информационной.

- 19. Структурный синтез это...
- а) исследование сил, действующих на звенья;
- б) исследование движения механизма без учета сил;
- в) исследование движения механизма с учётом сил;
- *г) проектирование структурной схемы механизма, подходящей для выполнения за- данного назначения.*
 - 20. Структурный анализ это...
 - а) определение степени подвижности механизма;
 - б) выяснение структуры и определение класса механизма;
 - в) исследование движения механизма без учёта сил;
 - г) проектирование схемы механизма по заданным свойствам.
 - 21. Структурная группа Ассура это...
 - а) кинематическая цепь со степенью подвижности равной единице;
 - б) кинематическая цепь с избыточной связью;
 - в) кинематическая цепь со степенью подвижности равной нулю;
 - г) кинематическая цепь с одним замкнутым контуром.
 - 22. Класс группы Ассура определяется...
 - а) наивысшим классом контура, входящего в состав группы Ассура;
 - б) числом кинематических пар в группе;
 - в) степенью подвижности группы Ассура;
 - г) числом звеньев, входящих в состав группы.
 - 23. Порядок группы Ассура определяется...
 - а) числом отнятых степеней свободы;
- б) числом свободных кинематических пар, которыми группа может присоединиться к другим звеньям;
 - в) числом кинематических пар в группе Ассура;
 - г) классом группы Ассура.
 - 24. Зубчатое зацепление является кинематической парой:
 - а) второго класса; б) третьего класса;
 - в) четвёртого класса; г) пятого класса.
 - 25. Какое число звеньев должно быть в группе Ассура?
 - а) любое; б) кратное трём;
 - в) чётное; г) нечётное.
- 26. Сколько степеней подвижности имеет ская пара?
 - a) 1;
 - *б) 3;*
 - *в*) 5;
 - г) 4.

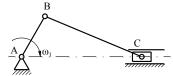


кинематиче-

Тема 2 «Кинематика механизмов»

- 1. Основной задачей кинематики является:
- а) определение скоростей и ускорений точек; б) уравновешивание масс звеньев; в) изучение сил, действующих на звенья; г) определение уравновешивающей силы.
 - 2. Вычислительный масштаб это...
 - а) отношение скорости точки к длине звена;
- б) отношение численного значения физической величины к длине отрезка (в миллиметрах) на чертеже;

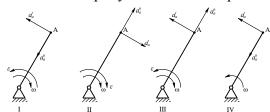
- в) отношение длины отрезка (в миллиметрах) на чертеже к численному значению физической величины;
 - г) отношение длины звена к скорости точки.
- 3. Какой графический метод применяют при построении планов положений механизма?
 - а) метод засечек;
 - б) метод рычага Жуковского;
 - в) метод обращения движения;
 - г) метод инверсии.
- 4. Линейная скорость точки звена, совершающего вращательное движение, определяется как:
 - а) произведение квадрата угловой скорости звена на радиус вращения точки;
 - б) произведение углового ускорения звена на радиус вращения точки;
 - в) произведение угловой скорости звена на радиус вращения точки;
 - г) произведение квадрата углового ускорения звена на радиус вращения точки.
- 5. Угловая скорость звена, совершающего вращательное движение, определяется как:
 - а) отношение линейной скорости точки звена к радиусу её вращения;
 - б) отношение квадрата линейной скорости точки звена к радиусу её вращения;
 - в) отношение касательного ускорения точки к радиусу её вращения;
 - г) отношение нормального ускорения точки к радиусу её вращения.
 - 6. Направление угловой скорости звена определяется направлением вектора:
 - а) абсолютной линейной скорости точки звена;
 - б) относительной линейной скорости точки звена;
 - в) касательного ускорения точки звена;
 - г) нормального ускорения точки звена.
 - 7. Укажите правильный план скоростей для механизма, показанного на рисунке.


- a) 2; б) 4; в) 1; г) 3.
- 8. Какое выражение записано верно?

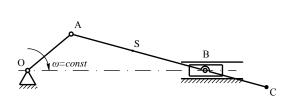
1)
$$\omega = \frac{a^n}{l}$$
; 2) $\omega = \frac{a^t}{l}$; 3) $\omega = \frac{V}{l}$; 4) $\omega = V \cdot l$.

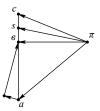
- a) 4; б) 1; в) 3; г) 2.
- 9. Чему равно значение скорости точки C при крайнем правом положении ползуна C, если угловая скорость $\omega_1 = 10 \; \frac{1}{c}$, длины звеньев

$$l_{AB} = 0.1$$
 м и $l_{BC} = 0.4$ м?

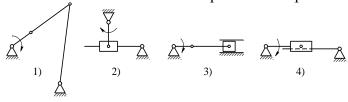

в)
$$V_C = 0.4 \text{ M/}c$$
; г) $V_C = 4 \text{ M/}c$

ша-

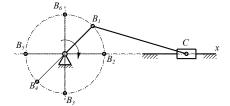

- 10. Нормальное ускорение точки звена, совершающего вращательное движение, определяется как:
 - а) произведение линейной скорости точки на радиус вращения;
 - б) произведение угловой скорости звена на радиус вращения;
 - в) произведение углового ускорения звена на радиус вращения;


- г) произведение квадрата угловой скорости звена на радиус вращения.
- 11. Касательное ускорение точки звена, совершающего вращательное движение, определяется как:
 - а) произведение угловой скорости звена на радиус вращения точки;
 - б) произведение углового ускорения звена на радиус вращения точки;
 - в) произведение линейной скорости точки на радиус вращения;
 - г) отношение угловой скорости к радиусу вращения точки.
- 12. Угловое ускорение звена, совершающего вращательное движение, определяется как:
 - а) произведение угловой скорости звена на радиус вращения точки;
 - б) произведение линейной скорости точки на радиус вращения;
 - в) отношение касательного ускорения точки звена к радиусу её вращения;
 - г) отношение нормального ускорения точки звена к радиусу её вращения.
 - 13. Направление углового ускорения звена определяется направлением вектора...
 - а) линейной скорости точки звена;
 - б) нормального ускорения точки звена;
 - в) относительной скорости точки звена;
 - г) касательного ускорения точки звена.
 - 14. На каком рисунке показано правильное направление ускорения точки А?

a) III; б) IV; в) II; г) I.


15. Ускорение какой точки механизма определено неправильно?

а) точки A; б) точки B; в) точки C; г) точки S.


16. Какой из механизмов изображён не в крайнем положении?

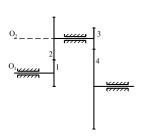
a) 2; б) 3; в) 4; г) 1.

- 17. Какое выражение не является свойством плана скоростей?
- а) векторы, выходящие из полюса р плана скоростей, изображают абсолютные скорости соответствующих точек звена;
- б) векторы, не проходящие через полюс р плана скоростей, изображают относительные скорости;
- в) все точки, скорости которых в данный момент времени равны нулю, отображаются полюсом плана скоростей;

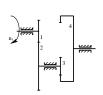
- г) полюс р плана скоростей соответствует мгновенному и постоянному центру вращения звена.
- 18. Какая теорема теоретической механики используется при построении плана скоростей механизма?
 - а) теорема о сложении ускорений;
 - б) теорема об изменении кинетической энергии;
 - в) теорема о возможных перемещениях;
 - г) теорема о сложении скоростей.
- 19. Точка C ползуна будет занимать крайние положения, если точка B кривошипа будет расположена в точках...

- a) $B_3 u B_6$; 6) $B_1 u B_4$;
- в) $B_1 u B_2$; г) $B_2 u B_5$.
- 20. Что является недостатком графического метода кинематического исследования?
- а) простота и наглядность;
- б) недостаточная точность получаемых результатов;
- в) сравнительно небольшая трудоёмкость;
- г) возможность изучить движение точки механизма за полный период.
- 21. Кинематический синтез механизма это определение ...
- а) движения звеньев механизма по заданному движению начальных звеньев;
- б) размеров звеньев по заданным динамическим свойствам;
- в) реакций, действующих в кинематических парах механизма;
- г) всех или некоторых размеров звеньев по заданным кинематическим свойствам механизма.

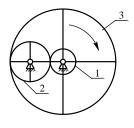
Тема 3: «Зубчатые механизмы»


- 1. Для передачи вращения от одного вала другому, оси которых параллельны применяют передачи:
 - а) конические зубчатые; б) цилиндрические зубчатые;
 - в) червячные; г) гипоидные.
 - 2. Реечным зацеплением называется передача вращения
 - а) от зубчатого колеса к червяку; б) от шестерни к колесу;
 - в) от зубчатого колеса к рейке; г) от шестерни к водилу.
 - 3. В паре зацепляющихся колёс, какое колесо называют шестерней?
 - а) большее колесо; б) меньшее колесо;
 - в) имеющее 17 зубьев; г) сателлит.
 - 4. Зубчатой передачей называется:
 - а) зубчатый механизм, состоящий из трёх зубчатых колёс;
 - б) зубчатый механизм с подвижной осью вращения одного из колёс;
- в) трёхзвенный зубчатый механизм, состоящий из стойки и двух зубчатых колёс, и обладающий одной степенью свободы;
 - г) зубчатый механизм, состоящий из двух колёс, одно из которых неподвижно.
 - 5. Передаточным отношением зубчатой передачи называют:
 - а) отношение числа зубьев ведущего к числу зубьев ведомого колеса;
 - б) отношение угловой скорости ведущего к угловой скорости ведомого колеса;
 - в) отношение угла поворота ведомого к углу поворота ведущего колеса;
 - г) отношение шага к модулю.
- 6. Укажите ошибочно записанное выражение для передаточного отношения зубчатой передачи

a)
$$x = \frac{n_2}{n_1}$$
; 6) $x = \frac{z_2}{z_1}$; B) $x = \frac{r_2}{r_1}$; r) $x = \frac{\omega_1}{\omega_2}$.


- 7. Чему равен суммарный коэффициент смещения при равносмещённом зацеплении?
 - a) 0; б) 1; в) 0,5; г) -1.
- 8. Назовите предельные значения коэффициента перекрытия для прямозубого зубчатого зацепления
 - а) 0 и 3,5; б) 0 и 1,98; в) 1,1 и 1,98; г) 1,1 и 3,5.
 - 9. Какой инструмент применяют для образования зубьев по методу копирования?
 - а) червячную фрезу; б) долбяк;
 - в) инструментальную рейку; г) пальцевую фрезу.
- 10. Какой инструмент применяют для образования зубьев по методу обката (огибания)?
 - а) пальцевую фрезу; б) долбяк;
 - в) протяжку; г) модульную фрезу.
- 11. Назовите наиболее производительный способ нарезания зубьев (с помощью какого инструмента)
 - а) инструментальной рейкой; б) пальцевой фрезой;
 - в) червячной фрезой; г) долбяком.
 - 12. С помощью какого инструмента можно нарезать самое точное зубчатое колесо?
 - а) долбяка; б) червячной фрезы;
 - в) строгальных резцов; г) инструментальной рейки.
- 13. Прямозубое зубчатое колесо модуля m = 5 мм имеет 50 зубьев. Определить делительный диаметр d, высоту зуба h, шаг p.
 - a) d = 125 мм, h = 8.25 мм, p = 31.4 мм;
 - б) d = 125 мм, h = 11,25 мм, p = 31,4 мм;
 - B) d = 250 мм, h = 11,25 мм, p = 15,7 мм;
 - Γ) d = 250 мм, h = 8,25 мм, p = 15,7 мм.
- 14. При каком значении коэффициента перекрытия ξ_2 обеспечивается непрерывность и бесшумность зацепления в передаче?
 - a) $\xi_2 < 1$; 6) $\xi_2 > 1$; B) $\xi_2 = 1$; $\xi_2 = 0$.
- 15. Шаг зубчатого колеса по делительной окружности выражается через модуль. Какое выражение верно?

a)
$$p = m/_{\pi}$$
; 6) $p = \pi/_{m}$; B) $p = \pi \cdot m$; r) $p = m \cdot z$.


- 16. Какая окружность делит высоту зуба h на высоту головки h_a и высоту ножки h_f ? а) начальная; б) основная; в) вершин; г) делительная.
- 17. Чему равно межосевое расстояние a_w нулевой эвольвентной цилиндрической прямозубой передачи внешнего зацепления по следующим данным: модуль m = 10 мм, числа зубьев $z_1 = 20$, $z_2 = 40$?
 - а) 300 мм; б) 400 мм; в) 200 мм; г) 500 мм.
- 18. По каким кривым очерчены профили зубьев цилиндрической передачи Новикова?
- а) по эвольвенте; о) по эпиция. В по гипоциклоиде; г) по дуге окружности. 19. Чему равно передаточное отношение u_{14} и расстояние O_1O_2 между осями колёс, если m=10 мм, $z_1=20$, $z_2=40$, $z_3=15$, $z_4=45$?
- 20. По какой окружности нулевого колеса толщина зуба s равна ширине впадины е?

- а) по окружности вершин; б) по основной окружности;
- в) по делительной окружности; г) по начальной окружности.
- 21. Действительный член Петербургской Академии наук XVIII века, автор 850 научных трудов, исследовавший различные профили зубьев зубчатых колёс и пришедший к выводу о том, что наиболее перспективный профиль эвольвентный:
 - а) Пафнутий Чебышев; б) Леонард Эйлер;
 - в) Леонид Ассур; г) Роберт Виллис.
 - 22. Укажите основное свойство эвольвенты
 - а) геометрическое место точек зацепления сопряжённых профилей зубьев;
- б) эвольвентные профили позволяют вносить желаемые изменения в размеры и форму зуба;
- в) нормаль к эвольвенте в любой её точке является касательной к основной окружности;
- *г) правильность зацепления не нарушается если межосевое расстояние несколько больше расчётного.*
 - 23. Передаточное отношение зубчатой передачи имеет знак:
 - а) любой; б) (+); в) (-); г) не имеет знака.
- 24. В зубчатой передаче с внутренним зацеплением числа зубьев колес соответственно равны $z_1 = 20$, $z_2 = 80$. Чему равно передаточное отношения u_{12} ?
 - a) +4; σ 6) -4; σ 8) +1/4; σ 7) -1/4.
- 25. Стандартный окружной шаг это расстояние, измеренное по дуге делительной окружности, между:
 - а) одноименными профилями двух соседних зубьев;
 - б) разноименными профилями двух соседних зубьев;
 - в) разноименными профилями одного зуба;
 - г) одноименными профилями двух несоседних зубьев.
- 26. Диаметр делительной окружности зубчатого колеса рассчитывается как произведение:
 - а) модуля зубьев на длину делительной окружности;
 - б) модуля зубьев на число ПИ;
 - в) модуля зубьев на число зубьев;
 - г) числа зубьев на число ПИ.
 - 27. Выходной крутящий момент в редукторе (по сравнению с входным):
 - а) увеличивается; б) уменьшается;
 - в) остается неизменным; г) стремится к нулю.
- 28. Передаточное отношение зубчатого механизма, составленного из нескольких последовательно соединенных ступеней, определяется как:
 - а) среднее арифметическое суммы передаточных чисел отдельных ступеней;
 - б) разность передаточных отношений отдельных ступеней;
 - в) сумма передаточных отношений отдельных ступеней;
 - г) произведение передаточных отношений отдельных ступеней.
 - 29. Степень подвижности планетарного зубчатого механизма равна:
 - a) 2; б) 1; в) 0; г) 3.
- 30. Понижающая передача, включающая в себя систему взаимодействующих звеньев, заключенных в единый корпус называется:
 - а) вариатор; б) мультипликатор;
 - в) редуктор; г) дифференциал.
- 31. Зубчатое колесо (планетарной передачи) с подвижной осью вращения называется:
 - а) сателлит; б) водило;
 - в) солнечное (центральное) колесо; г) стойка.

- 32. Определите частоту вращения n_4 зубчатого колеса 4 при $n_1 = 400$ об/мин, $z_1 = z_3 = 20$, $z_2 = 2$, $z_4 = 80$.
 - a) 8; б) -8;
 - в) 4; г) -4.
- 33. Определите частоту вращения n_3 колеса 3 зубчатого механизма при $n_1 = 150$ об/мин, $z_1 = 15$, $z_2 = 30$, $z_3 = 75$.
 - a) 30; б) -30;
 - в) 60; г) -60.

Тема 4: «Динамика механизмов»

- 1. Что предполагается заданным при силовом расчете механизмов?
- а) реакции в кинематических парах;
- б) закон движения ведущего звена и действующие силы;
- в) схема механизма и действующие силы;
- г) силы инерции звеньев.
- 2. Что такое сила полезного сопротивления?
- а) сила, для преодоления которой предназначен механизм;
- б) силы трения в кинематических парах;
- в) силы инерции звеньев;
- г) уравновешивающая сила.
- 3. Основная задача силового расчета состоит в определении:
- а) сил инерции звеньев;
- б) реакций в кинематических парах механизма и определении уравновешивающей силы;
 - в) сил полезного сопротивления;
 - г) сил трения.
 - 4. Какие допущения принимаются при силовом расчете механизма?
 - а) угловое ускорение ведущего звена постоянно;
 - б) кинетическая энергия механизма постоянна;
- в) отсутствие трения в кинематических парах; все силы расположены в одной плоскости;
 - г) силы инерции звеньев постоянны.
- 5. Что условно принимают за ведущее звено при исследовании механизмов двигателей?
 - а) кривошип; б) ползун; в) шатун; г) коромысло.
 - 6. Для чего нужно знать силы, приложенные к каждому звену меха-низма?
 - а) для определения сил инерции;
 - б) для составления уравнения кинетической энергии механизма;
 - в) для расчета на прочность звеньев механизма и их деталей;
 - г) для составления уравнения равновесия.
- 7. Как находится уравновешивающий момент, если известна уравновешивающая сила?
 - а) он равен работе движущих сил;
 - б) сила полезного сопротивления, умноженная на длину шатуна;
 - в) сила, умноженная на плечо относительно оси звена, к которому она приложена;
 - г) уравновешивающая сила умножается на скорость точки её приложения.
 - 8. Из-за чего возникают реакции в кинематических парах?
 - а) воздействие сил тяжести звеньев;
 - б) воздействие внешних сил, движение отдельных звеньев с ускорением;
 - в) воздействие сил инерции;

- г) воздействие сил трения.
- 9. В какой точке звена прикладывают вектор силы инерции?
- а) на оси вращения;
- б) в центре качания звена;
- в) в центре масс звена;
- г) в центре шарнира.
- 10. Какую размерность имеет момент пары сил инерции?
- а) $H \square M$; б) кг $\square CM$; в) M / H; г) кг/CM2.
- 11. На какие звенья действует момент пары сил инерции?
- а) на поступательно движущиеся звенья;
- б) на вращающиеся с ускорением звенья;
- в) на равномерно вращающиеся звенья;
- г) на неподвижные звенья.
- 12. Какая сила называется уравновешивающей?
- а) реакция в опорном шарнире;
- б) сила инерции звена;
- в) сила, равная по величине приведённой и противоположная ей по направлению;
- г) движущая сила.
- 13. Какая сила называется движущей?
- а) та сила, которая стремится ускорить движение ведущего звена;
- б) сила полезного сопротивления;
- в) сила трения;
- г) инерционная сила.
- 14. Сила пиления (в пилораме], является силой...
- а) силой трения;
- б) движущей силой;
- в) силой инерции;
- г) силой сопротивления.
- 15. Сила перемешивания теста (в тестомесильной машине) является силой...
- а) движущей силой;
- б) силой трения;
- в) силой сопротивления;
- г) силой инерции.
- 16. Динамический анализ механизма это:
- а) определение работы движущих сил;
- б) определение движения звеньев механизма под действием заданных сил;
- в) определение сил полезного сопротивления;
- г) определение сил, действующих на звенья.
- 17. Динамический синтез механизма это:
- а) определение параметров схемы механизма по заданным динамическим свойствам;
 - б) определение законов движения звеньев механизма;
 - в) определение кинетической энергии механизма;
 - г) определение работы движущих сил.
 - 18. Mаховик это:
 - а) зубчатое колесо, передающее вращение на кривошип;
- б) вращающийся массивный диск, являющийся аккумулятором кинетической энергии;
- в) вращающийся диск, предназначенный для увеличения коэффициента неравномерности движения механизма;
 - г) вращающийся диск, предназначенный для уравновешивания механизма.
 - 19. Силу тяжести груза, поднимаемого лебедкой, можно отнести:

- а) к силе вредного сопротивления;
- б) к силе полезного сопротивления;
- в) к силе инерции;
- г) к движущей силе.
- 20. В каком случае работа силы веса звена положительна?
- а) при опускании центра тяжести звена;
- б) при подъеме центра тяжести звена;
- в) при перемещении по горизонтальной направляющей;
- г) если центр тяжести звена неподвижен.
- 21. Какая сила называется приведенной?
- а) которая, будучи приложена к звену приведения, развивает мгновенную мощность, равную сумме мгновенных мощностей приводимых сил;
 - б) сила сопротивления шатуна;
 - в) динамическое давление в кинематических парах;
 - г) сила полезного сопротивления.
 - 22. Какая масса называется приведенной?
 - а) масса груза, поднимаемого портальным краном;
 - б) масса шатуна кривошипно-ползунного механизма;
- в) масса звена приведения, которое обладает кинетической энергией, равной сумме кинетических энергий приводимых звеньев;
 - г) масса кулисного камня в кулисном механизме.
 - 23. Что такое «рычаг Жуковского»?
- а) повернутый на 90° план скоростей механизма с приложенными к нему в соответствующих точках силами;
 - б) план скоростей механизма с приложенными к нему силами;
 - в) повернутый на 90 план скоростей с повернутыми на 90° силами;
 - г) план механизма с приложенными к нему силами.